精英家教网 > 高中数学 > 题目详情
18.点(1,2)关于点(2,3)的对称点的坐标为(3,4).

分析 设对称点的坐标为(a,b),由中点坐标公式可得a和b的方程组,解方程组可得.

解答 解:设点(1,2)关于点(2,3)的对称点的坐标为(a,b),
∴点(2,3)即为点(1,2)和点(a,b)的中点,
由中点坐标公式可得$\left\{\begin{array}{l}{\frac{1+a}{2}=2}\\{\frac{2+b}{2}=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=3}\\{b=4}\end{array}\right.$
故答案为:(3,4)

点评 本题考查中点坐标公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${a_{k_n}}∈\{{a_1},{a_2},…{a_n},…\}$,且${a_{k_1}},{a_{k_2}},…,{a_{k_n}},…$成等比数列,当k1=2,k2=4时,求数列{kn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=$\left\{{\begin{array}{l}{{x^2}+1}&{(x≤0)}\\{-2x}&{(x>0)}\end{array}}$,则使得函数值为10的x的集合为{-3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l:x+y-1=0,
(1)若直线l1过点(3,2)且l1∥l,求直线l1的方程;
(2)若直线l2过l与直线2x-y+7=0的交点,且l2⊥l,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)计算log2.56.25+lg0.01+ln$\sqrt{e}$-21+log23
(2)计算64${\;}^{-\frac{1}{3}}$-(-$\frac{3\sqrt{2}}{2}$)0+[(2)-3]${\;}^{\frac{4}{3}}$+16-0.75

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα=$\frac{1}{4}$,α∈($\frac{π}{2}$,π),则tanα=-$\frac{\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(m)=(3m-1)a+b-2m,当m∈[0,1]时,f(m)≤1恒成立,则a+b的最大值是$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=lgcosx+$\sqrt{25-{x}^{2}}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某公司经过市场调查发现,某种商品在最初上市的几个月内销量很好,几乎能将所生产的产品销售出去,为了最求最大的利润,该公司计划从当月开始,每月让产品生产量递增,且10个月后将商品的生产量翻两番,则平均每月生产量的增长率,约为14.87%.

查看答案和解析>>

同步练习册答案