精英家教网 > 高中数学 > 题目详情
13.如图,在四边形ABCD中,AD=DC=CB=1,$AB=\sqrt{3}$,对角线$AC=\sqrt{2}$.将△ACD沿AC所在直线翻折,当AD⊥BC时,线段BD的长度为$\sqrt{2}$.

分析 在△ABC中,利用勾股定理可证AC⊥BC,结合已知可证BC⊥平面ADC,进而可求BC⊥CD,利用已知及勾股定理即可计算得解BD的值.

解答 解:∵AD⊥BC,
又∵在△ABC中,AC=$\sqrt{2}$,BC=1,AB=$\sqrt{3}$,
∴AC2+BC2=AB2,可得:AC⊥BC,AD∩AC=A,
∴BC⊥平面ADC,
又∵BD?平面BCD,
∴BC⊥CD,
∵CD=BC=1,
∴BD=$\sqrt{C{D}^{2}+B{C}^{2}}$=$\sqrt{1+1}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题主要考查了勾股定理在解三角形中的应用,考查了空间想象能力和推理论证能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)的导函数f'(x),且满足关系式f(x)=x2+4xf'(2)+lnx,则f'(2)的值等于$-\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.圆x2+y2-2x-2y+1=0上的点到直线3x+4y=32的距离最大值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.方程x2+y2-4x=0表示的圆的圆心和半径分别为(  )
A.(-2,0),2B.(-2,0),4C.(2,0),2D.(2,0),4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在空间直角坐标系中,已知点A(1,0,2),B(2,1,0),C(0,a,1),若AB⊥AC,则实数a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),
(Ⅰ)以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,求曲线C的极坐标方程;
(Ⅱ)直线l的方程为$ρsin(θ+\frac{π}{4})$=$\frac{\sqrt{2}}{2}$,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线y=x-4与曲线y=$\sqrt{2x}$及x轴所围成图形的面积是(  )
A.$\frac{64}{3}$B.$\frac{40}{3}$C.$\frac{56}{3}$D.$\frac{38}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sin$(2x-\frac{π}{6})$+2sin2(x-$\frac{π}{12}$) (x∈R).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在直角坐标系xOy中,有一定点M(-1,2),若线段OM的垂直平分线过抛物线x2=2py(p>0)的焦点,则该抛物线的准线方程是$y=-\frac{5}{4}$.

查看答案和解析>>

同步练习册答案