分析 在△ABC中,利用勾股定理可证AC⊥BC,结合已知可证BC⊥平面ADC,进而可求BC⊥CD,利用已知及勾股定理即可计算得解BD的值.
解答 解:∵AD⊥BC,
又∵在△ABC中,AC=$\sqrt{2}$,BC=1,AB=$\sqrt{3}$,
∴AC2+BC2=AB2,可得:AC⊥BC,AD∩AC=A,
∴BC⊥平面ADC,
又∵BD?平面BCD,
∴BC⊥CD,
∵CD=BC=1,
∴BD=$\sqrt{C{D}^{2}+B{C}^{2}}$=$\sqrt{1+1}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题主要考查了勾股定理在解三角形中的应用,考查了空间想象能力和推理论证能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{64}{3}$ | B. | $\frac{40}{3}$ | C. | $\frac{56}{3}$ | D. | $\frac{38}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com