A. | 75° | B. | 60° | C. | 45° | D. | 30° |
分析 由题意由于图中已有了两两垂直的三条直线,所以可以建立空间直角坐标系,先准确写出个点的坐标,利用线面角和线与平面的法向量所构成的两向量的夹角之间的关系即可求解.
解答 解:如图所示,以O为原点建立空间直角坐标系O-xyz.
设OD=SO=OA=OB=OC=a,
则A(a,0,0),B(0,a,0),C(-a,0,0),P(0,-$\frac{a}{2}$,$\frac{a}{2}$).
则$\overrightarrow{CA}$=(2a,0,0),$\overrightarrow{PA}$=(-a,-$\frac{a}{2}$,$\frac{a}{2}$).
设平面PAC的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{2ax=0}\\{-ax-\frac{a}{2}y+\frac{a}{2}z=0}\end{array}\right.$,
可求得$\overrightarrow{n}$=(0,1,1),
则cos<$\overrightarrow{BC}$,$\overrightarrow{n}$>=$\frac{1}{2}$.
∴<$\overrightarrow{BC}$,$\overrightarrow{n}$>=60°,
∴直线BC与平面PAC所成的角为90°-60°=30°.
故选:D.
点评 此题重点考查了直线与平面所成的角的概念及利用空间向量的方法求解空间中的直线与平面的夹角.
科目:高中数学 来源: 题型:选择题
A. | 输入a,b,c三个数,按从小到大的顺序输出 | |
B. | 输入a,b,c三个数,按从大到小的顺序输出 | |
C. | 输入a,b,c三个数,按输入顺序输出 | |
D. | 输入a,b,c三个数,无规律地输出 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com