精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a,b,c分别为内角A,B,C,所对的边,且满足
3
a-2bsinA=0

(Ⅰ)求角B的大小;
(Ⅱ)若a+c=5,且a>c,b=
7
,求
AB
AC
的值.
(Ⅰ)∵
3
a-2bsinA=0,
3
sinA-2sinBsinA=0,…(2分)
∵sinA≠0,∴sinB=
3
2
,…(3分)
又B为锐角,则B=
π
3
;…(5分)
(Ⅱ)由(Ⅰ)可知B=
π
3
,又b=
7

根据余弦定理,得b2=7=a2+c2-2accos
π
3
,…(7分)
整理得:(a+c)2-3ac=7,
∵a+c=5,∴ac=6,
又a>c,可得a=3,c=2,…(9分)
∴cosA=
b2+c2-a2
2bc
=
7+4-9
4
7
=
7
14
,…(11分)
AB
AC
=|
AB
|•|
AC
|cosA=cbcosA=2×
7
×
7
14
=1.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,-1)
n
=(cosx,3)

(1)设函数f(x)=(
m
+
n
)•
m
,求函数f(x)的单调递增区间;
(2)已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,
3
c=2asin(A+B)
,对于(1)中的函数f(x),求f(B+
π
8
)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,A、B、C三内角所对的边分别为a、b、c,cos2A+
1
2
=sin2A,a=
7

(1)若b=3,求c;
(2)求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)在锐角△ABC中,a、b、c分别是三内角A、B、C所对的边,若a=3,b=4,且△ABC的面积为3
3
,则角C=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)在锐角△ABC中,A>B,则有下列不等式:①sinA>sinB;②cosA<cosB;③sin2A>sin2B;④cos2A<cos2B(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•武汉模拟)在锐角△ABC中,a、b、c分别为角A、B、C所对的边,又c=
21
,b=4,且BC边上高h=2
3

①求角C;
②a边之长.

查看答案和解析>>

同步练习册答案