精英家教网 > 高中数学 > 题目详情
如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的长.
分析:利用三角形的面积公式求出sin∠DAC的值,即得sin∠BAC的值,从而求得cos∠BAC的值.利用两角差的正弦公式求得sin∠ACB=sin(120°-∠BAC)的值.三角形ABC中,利用正弦定理,即可求出AB的长.
解答:解:∵在△ADC中,已知AC=7,AD=6,S△ADC=
15
3
2

则由S△ADC=
1
2
•AC•AD•sin∠DAC=
15
3
2
,∴sin∠DAC=
5
3
14

故 sin∠BAC=
5
3
14
,cos∠BAC=
11
14

由于∠ABC=60°,故sin∠ACB=sin(120°-∠BAC)=sin120°cos∠BAC-cos120°sin∠BAC
=
3
2
×
11
14
-(-
1
2
)×
5
3
14
=
4
3
7

△ABC中,由正弦定理可得
AB
sin∠ACB
=
AC
sin∠B
,即
AB
4
3
7
=
7
3
2
,解得AB=8.
点评:此题考查了正弦定理,三角形的面积公式,角平分线的性质,三角形的内角和定理,以及两角差的正弦公式,熟练掌握定理及公式是解本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,△ABC为边长等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求线段AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>
35
时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

同步练习册答案