精英家教网 > 高中数学 > 题目详情
已知x>0,由不等式x+
1
x
>2
x2+
2
x
>3
x3+
3
x
>4
…可以推广为(  )
A、xn+
n
x
>n
B、xn+
n
x
>n+1
C、xn+
n+1
x
>n+1
D、xn+
n+1
x
>n
分析:认真观察各式,不等式左边是两项的和,第一项是:x,x2,x3,…右边的数是:2,3,4…,利用此规律观察所给不等式,都是写成xn+
n
x
>n+1
的形式,从而即可求解.
解答:解:认真观察各式,
不等式左边是两项的和,第一项是:x,x2,x3,…
右边的数是:2,3,4…,利用此规律观察所给不等式,
都是写成xn+
n
x
>n+1
的形式,从而此归纳出一般性结论是:xn+
n
x
>n+1

故选B.
点评:本题考查了归纳推理、分析能力,认真观察各式,根据所给式子的结构特点的变化情况总结规律是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥33
x
2
x
2
4
x2
 
=3…,启发我们可以得出推广结论:x+
a
xn
≥n+1(n∈N+)则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•临沂二模)已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3,…,可以推出结论:x+
a
xn
≥n+1(n∈N*),则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,由不等式x+
1
x
≥2
x-
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
x
x2
≥3
3
x
2
x
2
4
x2
=3,x+
27
x2
=
x
3
+
x
3
+
x
3
+
27
x2
≥4
4
x
3
x
3
x
3
27
x2
=4,….在x>0条件下,请根据上述不等式归纳出一个一般性的不等式
x+
nn
xn
≥n+1(n∈N﹡)
x+
nn
xn
≥n+1(n∈N﹡)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,由不等式x+
1
x
≥2,x2+
2
x
=x2+
1
x
+
1
x
≥3,…
,启发我们可以得到推广结论:xn+
a
x
≥n+1(n∈N*)
,则a=
 

查看答案和解析>>

同步练习册答案