精英家教网 > 高中数学 > 题目详情

【题目】设椭圆长轴长为4,右焦点到左顶点的距离为3

1)求椭圆的方程;

2)设过原点的直线交椭圆于两点(不在坐标轴上),连接并延长交椭圆于点,若,求四边形面积的最大值.

【答案】1;(2

【解析】

1)根据题意,列出的方程组,求解即可求得结果;

2)设出直线方程,联立椭圆方程,结合韦达定理,用参数表示的面积;根据向量关系,求得,再利用对勾函数单调性求面积关于参数的函数的最大值即可.

1)由题意可得

所以椭圆方程为

2)由(1)知

设直线的方程为

联立

因为

故可得四边形为平行四边形,则

,故可得

时,恒成立,故单调递增,

上单调递减,

所以当,即时,

四边形的面积取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱柱平面内一点,点在直线上运动,若直线所成角的最小值与直线和平面所成角的最大值相等,则满足条件的点的轨迹是(

A.直线的一部分B.圆的一部分C.抛物线的一部分D.椭圆的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 函数.若关于的方程个互异的实数根,则实数的取值范围是 ( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平行四边形ABCD中,∠A2ABBCEF分别是BCAD的中点.将四边形DCEF沿着EF折起,使得平面ABEF⊥平面DCEF,得到三棱柱AFDBEC.

1)证明:DBEF

2)若AB2,求三棱柱AFDBEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数fx)的单调性;

2)若函数gx)=fx)﹣lnx2个不同的极值点x1x2x1x2),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校拟从甲、乙两名同学中选一人参加疫情知识问答竞赛,于是抽取了甲、乙两人最近同时参加校内竞赛的十次成绩,将统计情况绘制成如图所示的折线图.根据该折线图,下面结论正确的是(

A.甲、乙成绩的中位数均为7

B.乙的成绩的平均分为6.8

C.甲从第四次到第六次成绩的下降速率要大于乙从第四次到第五次的下降速率

D.甲的成绩的方差小于乙的成绩的方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)讨论单调性;

(Ⅱ)当时,设函数存在两个零点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设交于两点,中点为的垂直平分线交.为坐标原点,极轴为轴的正半轴建立直角坐标系.

1)求的直角坐标方程与点的直角坐标;

2)求证:.

查看答案和解析>>

同步练习册答案