精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,设点,已知,求实数的值.

【答案】(1)直线: ,曲线:(2)

【解析】

1)在直线的参数方程中消去参数t得直线的一般方程,在曲线的极坐标方程为中先两边同乘,得曲线的直角坐标方程;(2)将直线的参数方程直接代入曲线的直角坐标方程中,得到韦达定理,由,列方程求出答案.

解:(1)因为直线的参数方程为

消去t化简得直线的普通方程:

因为

所以

所以曲线的直角坐标方程为

2)将代入

,∴,满足

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的顶点焦点为作相似椭圆

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中,平面于点,点在棱上,满足.

,求证:平面;

设平面与平面所成的锐二面角的大小为,若,试判断命题的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,是数列的前项和,且

1)求,并求数列的通项公式

2)设,数列的前项和为,若对任意的正整数都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为改善人居环境,某区增加了对环境综合治理的资金投入,已知今年治理环境(亩)与相应的资金投入(万元)的四组对应数据的散点图如图所示,用最小二乘法得到关于的线性回归方程.

1)求的值,并预测今年治理环境10亩所需投入的资金是多少万元?

2)已知该区去年治理环境10亩所投入的资金为3.5万元,根据(1)的结论,请你对该区环境治理给出一条简短的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设直线.的坐标为.过点的直线的斜率为,且与分别交于点的纵坐标均为正数).

1)求实数的取值范围;

2)设,求面积的最小值;

3)是否存在实数,使得的值与无关?若存在,求出所有这样的实数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某乐园按时段收费,收费标准为:每玩一次不超过小时收费10元,超过小时的部分每小时收费元(不足小时的部分按小时计算).现有甲、乙二人参与但都不超过小时,甲、乙二人在每个时段离场是等可能的。为吸引顾客,每个顾客可以参加一次抽奖活动。

(1) 表示甲乙玩都不超过小时的付费情况,求甲、乙二人付费之和为44元的概率;

(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[01]之间的均匀随机数,并按如右所示的程序框图执行.若电脑显示中奖,则该顾客中奖;若电脑显示谢谢,则不中奖,求顾客中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表示正整数的所有因数中最大的奇数,例如:的因数有,则的因数有,则,那么__________

查看答案和解析>>

同步练习册答案