精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,定义椭圆的“伴随圆”方程为;若抛物线的焦点与椭圆C的一个短轴端点重合,且椭圆C的离心率为

1求椭圆C的方程和“伴随圆”E的方程;

2过“伴随圆”E上任意一点P作椭圆C的两条切线PAPBAB为切点,延长PA与“伴随圆”E交于点QO为坐标原点.

(i)证明:PA⊥PB

(ii)若直线OPOQ的斜率存在,设其分别为,试判断是否为定值,若是, 求出该值;若不是,请说明理由.

【答案】1 2(i)见解析(ii)

【解析】试题分析:(1)先求抛物线焦点得,再由离心率求,最后写出椭圆标准方程及“伴随圆”方程(2)(i)联立切线方程与椭圆方程,利用判别式为零得,根据点P在“伴随圆”上得关于k的一元二次方程,利用韦达定理得,即得结论,(ii) 由切线方程与圆方程联立,结合韦达定理得 ,再根据斜率公式化简得定值

试题解析:(1)由题意得

(2)(i)设 ,切线方程为 ,与椭圆方程联立得 ,由

代入得 ,因此

当切线斜率不存在或等于零时,结论也成立

(ii)由切线方程与圆方程联立得

所以 ,当切线斜率不存在时,结论也成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fn(x)= x3 (n+1)x2+x(n∈N*),数列{an}满足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4
(2)根据(1)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)求证: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的参数方程是 (α为参数),直线l的参数方程为 (t为参数),
(1)求曲线C与直线l的普通方程;
(2)若直线l与曲线C相交于P,Q两点,且|PQ|= ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣2tx+2,其中 t∈R.
(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;
(2)若t=1,且对任意的x∈[a,a+2],都有f(x)<5,求实数a的取值范围;
(3)若对任意的x1 , x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:分子为1且分母为正整数的分数叫做单位分数,我们可以把1拆分成多个不同的单位分数之和.例如:1= + + ,1= + + + ,1= + + + + ,…,依此拆分法可得1= + + + + + + + + + + + + + ,其中m,n∈N* , 则m﹣n=(
A.﹣2
B.﹣4
C.﹣6
D.﹣8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 a∈R,函数 f(x)=a﹣
(1)证明:f(x)在(﹣∞,+∞)上单调递增;
(2)若f(x)为奇函数,求:
①a的值;
②f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A= ,若BA求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(﹣1,4)及圆C:(x﹣2)2+(y﹣3)2=1.则下列判断正确的序号为
①点P在圆C内部;
②过点P做直线l,若l将圆C平分,则l的方程为x+3y﹣11=0;
③过点P做直线l与圆C相切,则l的方程为y﹣4=0或3x+4y﹣13=0;
④一束光线从点P出发,经x轴反射到圆C上的最短路程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为, 过点, 记椭圆的左顶点为.

(1)求椭圆的方程;

(2)设垂直于轴的直线交椭圆于两点, 试求面积的最大值;

(3)过点作两条斜率分别为的直线交椭圆于两点,且, 求证: 直线恒过一个定点.

查看答案和解析>>

同步练习册答案