精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=a•2x+b的图象过点$A({1,\frac{3}{2}})$,$B({2,\frac{5}{2}})$.
(1)求函数y=f(x)的反函数y=f-1(x)的解析式;
(2)若$F(x)={f^{-1}}({{2^{x-1}}})-{log_{\frac{1}{2}}}f(x)$,求使得F(x)≤0的x取值范围.

分析 (1)先求出f(x)=$\frac{1}{2}×{2}^{x}$+$\frac{1}{2}$,由此能求出y=f(x)的反函数y=f-1(x)的解析式.
(2)推导出$F(x)={f^{-1}}({{2^{x-1}}})-{log_{\frac{1}{2}}}f(x)$=$lo{g}_{2}({2}^{x}-1)$-$lo{g}_{\frac{1}{2}}(\frac{{2}^{x}+1}{2})$,由F(x)≤0,得$lo{g}_{2}({2}^{x}-1)$≤$lo{g}_{\frac{1}{2}}(\frac{{2}^{x}+1}{2})$=$lo{g}_{2}(\frac{2}{{2}^{x}+1})$,由此能求出x取值范围.

解答 解:(1)∵f(x)=a•2x+b的图象过点$A({1,\frac{3}{2}})$,$B({2,\frac{5}{2}})$,
∴$\left\{\begin{array}{l}{2a+b=\frac{3}{2}}\\{4a+b=\frac{5}{2}}\end{array}\right.$,解得a=$\frac{1}{2}$,b=$\frac{1}{2}$,
∴f(x)=$\frac{1}{2}×{2}^{x}$+$\frac{1}{2}$,
设y=$f(x)=\frac{1}{2}×{2}^{x}+\frac{1}{2}$,
则2x=2y-1,x=log2(2y-1),
x,y互换得y=f(x)的反函数y=f-1(x)的解析式为y=f-1(x)=log2(2x-1),x$>\frac{1}{2}$.
(2)∵$F(x)={f^{-1}}({{2^{x-1}}})-{log_{\frac{1}{2}}}f(x)$
=$lo{g}_{2}(2×{2}^{x-1}-1)$-$lo{g}_{\frac{1}{2}}(\frac{1}{2}×{2}^{x}+\frac{1}{2})$=$lo{g}_{2}({2}^{x}-1)$-$lo{g}_{\frac{1}{2}}(\frac{{2}^{x}+1}{2})$,
F(x)≤0,
∴$lo{g}_{2}({2}^{x}-1)$≤$lo{g}_{\frac{1}{2}}(\frac{{2}^{x}+1}{2})$=$lo{g}_{2}(\frac{2}{{2}^{x}+1})$,
∴$\left\{\begin{array}{l}{{2}^{x}-1>0}\\{\frac{2}{{2}^{x}+1}>0}\\{{2}^{x}-1≤\frac{2}{{2}^{x}+1}}\end{array}\right.$,解得0<x<$lo{g}_{2}\sqrt{3}$.
∴x取值范围是(0,$lo{g}_{2}\sqrt{3}$).

点评 本题考查反函数的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意反函数、对数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.《算数书》竹简于上世纪八十年代在湖北省张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“禾盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈$\frac{1}{36}$L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈$\frac{7}{264}$L2h相当于将圆锥体积公式中的圆周率π近似取为(  )
A.$\frac{22}{7}$B.$\frac{25}{8}$C.$\frac{23}{7}$D.$\frac{157}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在直角坐标系中,曲线的C参数方程为$\left\{\begin{array}{l}{x=1+2cosφ}\\{y=1+2sinφ}\end{array}\right.$(φ为参数),现以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=$\frac{4}{cosθ-sinθ}$.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)在曲线C上是否存在一点P,使点P到直线l的距离最小?若存在,求出距离的最小值及点P的直角坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥 P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=$\sqrt{2}$a.
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(sinx+cosx)2+2cos2x.
(1)把函数化为f(x)=Asin(ωx+ϕ)+b的形式,然后写出最小正周期、振幅、初相;
(2)求f(x)的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数a>0,且函数$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$为奇函数.判断函数f(x)的单调性,并用单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若M{x|y=2x+1},N={y|y=-x2},则集合M,N的关系是(  )
A.M∩N={(-1,1)}B.M∩N=∅C.M⊆ND.N⊆M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求过点A(2,1),圆心在直线y=-2x上,且与直线x+y-1=0相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$cosα=\frac{3}{5}$,$α∈(\frac{3π}{2},2π)$,则$cos(α-\frac{π}{4})$=(  )
A.$\frac{{7\sqrt{2}}}{10}$B.$-\frac{{7\sqrt{2}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$-\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

同步练习册答案