分析 (1)$\frac{2x+y-1}{x}$=2+$\frac{y-1}{x}$,$\frac{y-1}{x}$的几何意义为圆上动点与定点(0,1)的斜率,过(0,1)的直线与圆相切时,斜率取最值,即可求$\frac{2x+y-1}{x}$的取值范围;
(2)|x+y+l|=$\sqrt{2}•$$\frac{|x+y+1|}{\sqrt{2}}$,$\frac{|x+y+1|}{\sqrt{2}}$的几何意义为圆上动点到直线x+y+1=0的距离,圆心到直线的距离加上半径长为最大值,圆心到直线的距离减半径长为最小值,即可求|x+y+l|的取值范围.
解答 解:(1)$\frac{2x+y-1}{x}$=2+$\frac{y-1}{x}$,$\frac{y-1}{x}$的几何意义为圆上动点与定点(0,1)的斜率,过(0,1)的直线与圆相切时,斜率取最值,因此$\frac{y-1}{x}$∈[0,$\frac{4}{3}$],所以$\frac{2x+y-1}{x}$∈[2,$\frac{10}{3}$];
(2)|x+y+l|=$\sqrt{2}•$$\frac{|x+y+1|}{\sqrt{2}}$,$\frac{|x+y+1|}{\sqrt{2}}$的几何意义为圆上动点到直线x+y+1=0的距离,圆心到直线的距离加上半径长为最大值,圆心到直线的距离减半径长为最小值,$\frac{|x+y+1|}{\sqrt{2}}$∈[$\frac{5}{\sqrt{2}}$-1,$\frac{5}{\sqrt{2}}$+1],所以|x+y+1|∈[5-$\sqrt{2}$,5+$\sqrt{2}$].
点评 本题考查直线与圆的位置关系,考查学生分析解决问题的能力,正确转化是关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{5}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3n}{10(10-3n)}$ | B. | $\frac{n}{10(10-3n)}$ | C. | $\frac{n}{10-3n}$ | D. | $\frac{n}{10(13-3n)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1) | B. | (0,$\frac{1}{3}$] | C. | (0,$\frac{1}{6}$) | D. | ($\frac{1}{6}$,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x-5)2+(y-4)2=16 | B. | (x+5)2+(y-4)2=16 | C. | (x-5)2+(y-4)2=25 | D. | (x+5)2+(y-4)2=25 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4031 | B. | 4032 | C. | 4033 | D. | 4034 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com