精英家教网 > 高中数学 > 题目详情
如图所示,已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆C上一动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足
FG
FH
,求λ
的取值范围.
(1)设点N的坐标为(x,y),
AM
=2
AP
,∴点P为AM的中点,
NP
AM
=0,∴NP⊥AM,∴NP是线段AM的垂直平分线,∴NM=NA,
又点N在CM上,设圆的半径是 r,则 r=2
2

∴NC=r-NM,∴NC+NM=r=2
2
>AC,
∴点N的轨迹是以A、C 为焦点的椭圆,
∴2a=2
2
,c=1,可求得b=1,
∴椭圆
x2
2
+y2=1
,即曲线E的方程:
x2
2
+y2=1

(2)当斜率不存在时,直线与曲线E有2个交点此时参数的值为λ=
1
3

不妨设FH斜率为k,且将原点移至F,
则直线FH方程为y=kx,椭圆方程变为
x2
2
+(y-2)2=1,
将直线方程代入椭圆得
x2
2
+(kx-2)2=1,整理得(1+2k2)x2-8kx+6=0,
直线与曲线E有二不同的交点,故△=(-8k)2-4•6(1+2k2)=16k2-24>0,即k2
3
2

因为左右对称,可以研究单侧,
当k>0时,λ=
x1
x2
=
-b-
b2-4ac
-b+
b2-4ac
即λ=
8k-
16k2-24
8k+
16k2-24
=
2-
1-
3
2k2
2+
1-
3
2k2

由k2
3
2
,即0<
3
2k2
<1
,即0<
1-
3
2k2
?
<1

令t=
1-
3
2k2
?
∈(0,1),则λ=
2-t
2+t
,t∈(0,1),
由于λ=
2-t
2+t
=
4
2+t
-1
,故函数在t∈(0,1)上是减函数,故
1
3
<λ<1

综上,参数的取值范围是
1
3
≤λ<1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线x-y+1=0经过椭圆S:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意k>0,求证:PA⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,点A,B关于y轴对称.一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.
(1)求曲线E的方程;
(2)已知点S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若点F(1,
3
2
)
是曲线E上的一点,设M,N是曲线E上不同的两点,直线FM和FN的倾斜角互补,试判断直线MN的斜率是否为定值,如果是,求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2为左、右焦点,离心率e=
1
2
,一个短轴的端点(0,
3
);抛物线C2:y2=4mx(m>0),焦点为F2,椭圆C1与抛物线C2的一个交点为P.
(1)求椭圆C1与抛物线C2的方程;
(2)直线l经过椭圆C1的右焦点F2与抛物线C2交于A1,A2两点,如果弦长|A1A2|等于△PF1F2的周长,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的两条渐近线方程为直线l1:y=-
x
2
l2:y=
x
2
,焦点在y轴上,实轴长为2
3
,O为坐标原点.
(1)求双曲线方程;
(2)设P1,P2分别是直线l1和l2上的点,点M在双曲线上,且
P1M
=2
MP2
,求三角形P1OP2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[理]如图,已知动点A,B分别在图中抛物线y2=4x及椭圆
x2
4
+
y2
3
=1
的实线上运动,若ABx轴,点N的坐标为(1,0),则△ABN的周长l的取值范围是______.
[文]点P是曲线y=x2-lnx上任意一点,则P到直线y=x-2的距离的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x-1被y2=x截得的弦长为(  )
A.3B.2
3
C.
10
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,左焦点为F,过原点的直线l交椭圆于M,N两点,△FMN面积的最大值为1.
(1)求椭圆E的方程;
(2)设P,A,B是椭圆E上异于顶点的三点,Q(m,n)是单位圆x2+y2=1上任一点,使
OP
=m
OA
+n
OB

①求证:直线OA与OB的斜率之积为定值;
②求OA2+OB2的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线y=kx与双曲线
x2
a2
-
y2
b2
=1
的左右两支都有交点的充要条件是k∈(-1,1),且该双曲线与直线y=
1
2
x-
3
2
相交所得弦长为
4
15
3
,则该双曲线方程为______.

查看答案和解析>>

同步练习册答案