10£®ÈôÇúÏßC1£º$\left\{{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÇúÏßC2£º$\left\{{\begin{array}{l}{x=acosϕ}\\{y=bsinϕ}\end{array}}\right.$£¨ϕΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÉäÏßl£º¦È=¦ÁÓëC1£¬C2·Ö±ð½»ÓÚP£¬QÁ½µã£¬µ±¦Á=0ʱ£¬|PQ|=2£¬µ±$¦Á=\frac{¦Ð}{2}$ʱ£¬PÓëQÖغϣ®
£¨¢ñ£©°ÑC1¡¢C2»¯ÎªÆÕͨ·½³Ì£¬²¢Çóa£¬bµÄÖµ£»
£¨¢ò£©Ö±Ïßl£º$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©ÓëC2½»ÓÚA£¬BÁ½µã£¬Çó|AB|£®

·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊý£¬¼´¿É°ÑC1¡¢C2»¯ÎªÆÕͨ·½³Ì£¬µ±$¦Á=\frac{¦Ð}{2}$ʱ£¬PÓëQÖغϣ¬¼´¿ÉÇóa£¬bµÄÖµ£»
£¨¢ò£©°ÑÖ±Ïßl£º$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£©ÓëC2ÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½Ö±½ÓÇó½â|AB|£®

½â´ð ½â£º£¨¢ñ£©C1£ºx2+y2=1£¬C2£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
µ±¦Á=0ʱ£¬P£¨1£¬0£©£¬Q£¨a£¬0£©¡à|PQ|=a-1=2£¬a=3
µ±$¦Á=\frac{¦Ð}{2}$ʱ£¬PÓëQÖغϣ¬
¡àb=1£¬C2£º$\frac{x^2}{9}+{y^2}=1$¡­£®£¨5·Ö£©
£¨¢ò£©°Ñ$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=-1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$´úÈë$\frac{x^2}{9}+{y^2}=1$µÃ $5{t^2}-10\sqrt{2}t+1=0$
¡à${t_1}+{t_2}=2\sqrt{2}$£¬${t_1}{t_2}=\frac{1}{5}$
¡à|AB|=$|{t_1}-{t_2}|=\sqrt{{{£¨{t_1}+{t_2}£©}^2}-4{t_1}{t_2}}=\frac{{6\sqrt{5}}}{5}$¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³ÌÓë²ÅµÄ»¥»¯£¬²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒ壬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÒÑÖªËıßÐÎABCDÄÚ½ÓÓÚÔ²£¬ÑÓ³¤ABºÍDC½»ÓÚE£¬EGƽ·Ö¡ÏE£¬ÇÒÓëBC¡¢AD±ðÏཻÓÚF¡¢G£®ÇóÖ¤£º¡ÏCFG=¡ÏDGF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ë«ÇúÏßx2-y2=2µÄÓÒ×¼Ïß·½³ÌΪx=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬¡÷ABCÄÚ½ÓÓÚÔ²O£¬AEƽ·Ö¡ÏBAC½»BCÓÚµãD£¬Á¬½ÓBE£®
£¨1£©ÇóÖ¤£º$\frac{AE}{AC}$=$\frac{BE}{DC}$£»
£¨2£©Èô¡÷ABCµÄÃæ»ýS=$\frac{1}{2}$AD•AE£¬ÇóÖ¤£ºBA¡ÍAC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ³¤Ö᳤Ϊ6£¬µãAΪ×󶥵㣬B£¬CÔÚÍÖÔ²EÉÏ£¬ÈôËıßÐÎOABCλƽÐÐËıßÐΣ¬ÇÒ¡ÏOAB=30¡ã£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©¹ýµãM£¨1£¬0£©×÷Çãб½ÇΪ135¡ãµÄÖ±Ïßl£¬½»ÍÖÔ²ÓÚP£¬QÁ½µã£¬ÉèµãFÊÇÍÖÔ²µÄ×󽹵㣬Çó¡÷FPQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÈýÀâ׶D-ABCµÄËĸö¶¥µã¾ùÔڰ뾶ΪRµÄÇòÃæÉÏ£¬ÇÒAB=BC=$\sqrt{3}$£¬AC=3£¬Èô¸ÃÈýÀâ׶Ìå»ýµÄ×î´óֵΪ$\frac{3\sqrt{3}}{4}$£¬ÔòR=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬AB=BC=CA=AA1=2£¬²àÀâAA1¡ÍƽÃæABC£¬DΪÀâA1B1µÄÖе㣬EΪAA1µÄÖе㣬µãFÔÚÀâABÉÏ£¬ÇÒAF=$\frac{1}{4}$AB£®
£¨1£©ÇóÖ¤£ºEF¡ÎƽÃæBC1D£»
£¨2£©ÇóVD-EBC1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄÒ»¸ö¶¥µãΪB£¨0£¬4£©£¬ÀëÐÄÂÊe=$\frac{{\sqrt{5}}}{5}$£¬Ö±Ïßl½»ÍÖÔ²ÓÚM¡¢NÁ½µã£®
£¨1£©ÈôÖ±ÏßlµÄ·½³ÌΪy=x-4£¬ÇóÏÒMNµÄ³¤£»
£¨2£©Èç¹ûMNµÄÖеãΪQ£¬ÇÒ$\overrightarrow{BF}$=2$\overrightarrow{FQ}$£¬£¨FΪÍÖÔ²µÄÓÒ½¹µã£©£¬ÇóÖ±Ïßl·½³ÌµÄÒ»°ãʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª£ºÈçͼ£¬ÔÚ¡÷ABCÖУ¬AC=13£¬BC=14£¬AB=15£¬Çó¡÷ABCÍâ½ÓÔ²¡ÑOµÄ°ë¾¶r£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸