【题目】某高中社团进行社会实践,对岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:
完成以下问题:
(Ⅰ)补全频率分布直方图并求的值;
(Ⅱ)从岁年龄段的“时尚族”中采用分层抽样法抽取人参加网络时尚达人大赛,其中选取人作为领队,记选取的名领队中年龄在岁的人数为,求的分布列
【答案】⑴频率分布图略,,,;⑵见解析
【解析】
(Ⅰ)根据所求矩形的面积和为1求出第二组的频率,然后求出高,画出频率直方图,求出第一组的人数和频率从而求出n,由题可知,第二组的频率以及人数,从而求出p的值,然后求出第四组的频率和人数从而求出a的值;
(Ⅱ)因为[40,45)岁年龄段的“时尚族”与[45,50)岁年龄段的“时尚族”的比值为2:1,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,机变量X服从超几何分布,X的取值可能为0,1,2,3,分别求出相应的概率,列出分布列.
⑴第二组的频率为,
所以高为,频率直方图如下:
第一组的人数为,频率为,所以
由题可知,第二组的频率为,所以第二组的人数为,
所以.
第四组的频率为,所以第四组的人数为,
所以
⑵因为[40,45)岁年龄段的“时尚族”与[45,50)岁年龄段的“时尚族”的比值
为,
所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人.
随机变量服从超几何分布
,,
,
所以随机变量X的分布列为
X | 0 | 1 | 2 | 3 |
P |
科目:高中数学 来源: 题型:
【题目】以下资料是一位销售经理收集到的每年销售额y(千元)和销售经验x(年)的关系:
销售经验x/年 | 1 | 3 | 4 | 4 | 6 | 8 | 10 | 10 | 11 | 13 |
年销售额y/千元 | 80 | 97 | 92 | 102 | 103 | 111 | 119 | 123 | 117 | 136 |
(1)依据这些数据画出散点图并作直线=78+4.2x,计算;
(2)依据这些数据求回归直线方程并据此计算;
(3)比较(1) (2)中的残差平方和的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中,,斜边可以通过以直线为轴旋转得到,且二面角是直二面角,动点在斜边上.
(1)当D为AB的中点时,求异面直线AO与CD所成角的正切值;
(2)求CD与平面AOB所成角的正切值的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A袋中有1个红球和1个黑球,B袋中有2个红球和1个黑球,A袋中任取1个球与B袋中任取1个球互换,这样的互换进行了一次,求:
(1)A袋中红球恰是1个的概率;
(2)A袋中红球至少是1个的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A.B两种规格的产品都需娶在甲、乙两台机器上各加工一道工序才能成为成品,巳知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时,在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时,A产品每件利润300元,B成品每件利润400元,则这两台机器在一个工作日内创造的最大利润是___________元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x2+bln(x+1)在[0,+∞)上单调递减,则b的取值范围( )
A.[0,+∞)
B.[﹣ ,+∞)
C.(﹣∞,0]
D.(﹣∞,﹣ ]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com