精英家教网 > 高中数学 > 题目详情
方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)表示的曲线关于x+y=0成轴对称图形,则(  )
A、D+E=0B、D+F=0C、E+F=0D、D+E+F=0
分析:由圆的方程一般式求出圆心,代入对称轴方程即可.
解答:解:曲线关于x+y=0成轴对称图形,即圆心在x+y=0上.圆心坐标是(-
D
2
,-
E
2
)
,所以D+E=0.
故选A.
点评:本题考查圆的一般式方程,求圆心等,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四个命题:
P1:若
a
b
=0
,则一定有
a
b

P2:?x、y∈R,sin(x-y)=sinx-siny;
P3:?a∈(0,1)∪(1,+∞),函数f(x)=a1-2x+1都恒过定点(
1
2
,2)

P4:方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F≥0.
其中假命题的是(  )
A、P1P4
B、P4P2
C、P1P3
D、P3P4

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于直线y=x对称,那么必有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①若非零向量
a
b
,满足
a
b
=0,则一定有
a
b

②将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)的图象;
③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|≥2,则-2<x<2”;
④方程
x
2
 
+y2
+Dx+Ey+F=0表示圆的充要条件是
D
2
 
+E2
-4F≥0;
⑤对于命题p:?x∈R.使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0.
其中假命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
a
b
的夹角为锐角的充要条件是
a
b
>0

②?x,y∈R,sin(x-y)=sinx-siny;
③?a∈(0,1)∪(1,+∞),函数f(x)=a1-2x+1都恒过定点(
1
2
,2)

④方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F≥0;
其中正确命题的序号是
②③
②③
.(将正确命题的序号都填上)

查看答案和解析>>

同步练习册答案