已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明:为定值.
(1);(2)证明过程详见解析.
解析试题分析:本题考查抛物线的标准方程和几何性质、直线的方程、向量的数量积等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力、综合分析和解决问题的能力.第一问,将直线与抛物线方程联立,消去参数,得到关于的方程,得到两根之和两根之积,设出点的坐标,代入到中,化简表达式,再将上述两根之和两根之积代入得出的值,从而得到抛物线的标准方程;第二问,先利用点的坐标得出直线的斜率,再根据抛物线方程转化参数,得到和的关系式,代入到所求证的式子中,将上一问中的两根之和两根之积代入,化简表达式得出常数即可.
试题解析:(Ⅰ)将代入,得. 2分
其中
设,,则
,. 4分
.
由已知,,.
所以抛物线的方程. 6分
(Ⅱ)由(Ⅰ)知,,.
,同理, 10分
所以. 12分
考点:1.抛物线的标准方程;2.韦达定理;3.向量的数量积;4.直线的斜率公式.
科目:高中数学 来源: 题型:解答题
已知点分别是椭圆的左、右焦点, 点在椭圆上上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线若、均与椭圆相切,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左、右焦点分别为、,为原点.
(1)如图1,点为椭圆上的一点,是的中点,且,求点到轴的距离;
(2)如图2,直线与椭圆相交于、两点,若在椭圆上存在点,使四边形为平行四边形,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的两个焦点是F1(c,0),F2(c,0)(c>0)。
(I)若直线与椭圆C有公共点,求的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF1|+|EF2|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足 且,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分) 已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A、B运动时,满足=,试问直线AB的斜率是否为定值,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线上有一点,到焦点的距离为.
(Ⅰ)求及的值.
(Ⅱ)如图,设直线与抛物线交于两点,且,过弦的中点作垂直于轴的直线与抛物线交于点,连接.试判断的面积是否为定值?若是,求出定值;否则,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com