精英家教网 > 高中数学 > 题目详情

【题目】fx)=(ex-ex,则不等式fx)<f(1+x)的解集为( )

A. (0,+∞) B. (-∞,-

C. (-,+∞) D. (-,0)

【答案】C

【解析】

结合的关系,判定奇偶性,结合奇偶性及单调性,建立不等式,计算x的范围,即可得出答案。

fx)的定义域为x∈R,

fx)=(ex-ex

f(-x)=(ex-ex

=(ex-ex

=(ex-exfx),

fx)在R上为偶函数,

,分别令,

,可知,令,则,

为增函数,所以得到也为增函数,

递增,在递减,所以

∴不等式fx)<f(1+x)等价于|x|<|1+x|,

x2<1+2xx2,∴x>-

即不等式fx)<f(1+x)的解集为{x|x>-},故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校举行环保知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累积答对3题或打错3题即终止其初赛的比赛:答对3题者直接进入初赛,打错3题者则被淘汰.已知选手甲答对每个问题的概率相同,并且相互之间没有影响,答题连续两次答错的概率为.

1)求选手甲可进入决赛的概率.

2)设选手甲在初赛中答题的个数为,试求的分布列,并求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.

(1)求椭圆C的方程;

(2)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数. 为实数,且,记由所有组成的数集为.

1)已知,求

2)对任意的恒成立,求的取值范围;

3)若,判断数集中是否存在最大的项?若存在,求出最大项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到个组成,周而复始,循环记录。2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()

A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求圆C的极坐标方程;

(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在表中,如何设计甲、乙两种货物应各托运的箱数可以获得最大利润,最大利润是多少?

货物

体积

重量

利润百元

5

2

20

4

5

10

托运限制

24

13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均在35微克/立方米以下空气质量为一级,在35微克/立方米75微克/立方米之间空气质量为二级,在75微克/立方米以上空气质量为超标.北方某市环保局从2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如下图所示(十位为茎,个位为叶).

(1)15天的数据中任取3天的数据,记表示其中空气质量达到一级的天数,求的分布列;

(2)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中大约有多少天的空气质量达到一级.

查看答案和解析>>

同步练习册答案