精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|3x﹣4|.
(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;
(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.

【答案】解:(Ⅰ)函数g(x)=f(x)+|x+2|﹣4=|3x﹣4|+|x+2|﹣4, 图象如图所示,
由图象可得,x= ,g(x)有最小值﹣
(Ⅱ)由题意,|3x﹣4|<5,可得﹣ <x<3,∴p,q∈(﹣ ,3),
∴|p+q+pq|≤|p|+|q|+|pq|<3+3+3×3=15,
∴λ≥15.

【解析】(Ⅰ)根据函数解析式作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;(Ⅱ)记不等式f(x)<5的解集为M,可得p,q∈(﹣ ,3),若p,q∈M,且|p+q+pq|<λ,利用绝对值不等式,即可求实数λ的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(sinx+cosx)-,x∈R.

(1)求函数f(x)的最小正周期和单调递增区间;

(2)设>0,若函数g(x)=f(x+)为奇函数,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax+ ,其中a>0.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )<e (n∈N* , n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,曲线C1的参数方程为 (φ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ.
(Ⅰ)求曲线C1的极坐标方程与曲线C2的直角坐标方程;
(Ⅱ)若直线θ= (ρ∈R)与曲线C1交于P,Q两点,求|PQ|的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产不同规格的一种产品,根据检测标准,其合格产品的质量 与尺寸 之间满足关系式 为大于 的常数),现随机抽取6件合格产品,测得数据如下:

对数据作了处理,相关统计量的值如下表:

(1)根据所给数据,求 关于 的回归方程(提示:由已知, 的线性关系);
(2)按照某项指标测定,当产品质量与尺寸的比在区间 内时为优等品,现从抽取的6件合格产品再任选3件,求恰好取得两件优等品的概率;
(附:对于一组数据 ,其回归直线 的斜率和截距的最小二乘法估计值分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题错误的是( )
A.命题“若 ,则 ”的逆命题为“若 ,则
B.对于命题 ,使得 ,则 ,则
C.“ ”是“ ”的充分不必要条件
D.若 为假命题,则 均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统综》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有( )盏灯.
A.14
B.12
C.10
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)f(x)的最小正周期及单调减区间;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}n项和为Sn已知S1S2S4成等比数列{an}的通项公式.

查看答案和解析>>

同步练习册答案