精英家教网 > 高中数学 > 题目详情
8.已知$tan(α+β)=\frac{2}{5}$,$tanβ=\frac{1}{3}$,则$tan(α-\frac{π}{4})$的值为(  )
A.$\frac{8}{9}$B.-$\frac{8}{9}$C.$\frac{1}{17}$D.$\frac{16}{17}$

分析 由已知利用两角和的正切函数公式可求tanα,进而利用特殊角的三角函数值及两角差的正切函数公式即可计算得解.

解答 解:∵$tanβ=\frac{1}{3}$,$tan(α+β)=\frac{2}{5}$=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{tanα+\frac{1}{3}}{1-\frac{1}{3}tanα}$,
∴解得:tanα=$\frac{1}{17}$,
∴$tan(α-\frac{π}{4})$=$\frac{tanα-1}{1+tanα}$=-$\frac{8}{9}$.
故选:B.

点评 本题主要考查了两角和的正切函数公式,特殊角的三角函数值及两角差的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.在单位圆中,面积为1的扇形所对的弧长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆x2+y2=r2,点P(x0,y0)是圆上一点,自点P向圆作切线,P是切点,求切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$f(α)=\frac{{cos({-α})sin({π+α})}}{{cos({3π+α})}}+\frac{{sin({-2π-α})sin({α+\frac{π}{2}})}}{{cos({\frac{3π}{2}-α})}}$,求$f({\frac{π}{12}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简$\frac{cos(π+α)•sin(α+2π)}{sin(-α-π)•(cos-π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知等差数列{an}满足:a1+a5=4,则数列$\left\{{{2^{a_n}}}\right\}$的前5项之积为1024.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知A={α|α=k×45°+15°,k∈Z},当k=k0(k0∈Z)时,A中的一个元素与角-255°终边相同,若k0取值的最小正数为a,最大负数为b,则a+b=(  )
A.-12B.-10C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为首项为1,公差为2的等差数列
(1求{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n-1}}$,数列{bn}的前n项和为Tn,求Tn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y=\frac{{\sqrt{-{x^2}+2x+15}}}{x-1}$的定义域为[-3,1)∪(1,5].

查看答案和解析>>

同步练习册答案