精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是矩形, 平面,于点

(1) 求证:
(2) 求直线与平面所成的角的余弦值.

(1)答案详见解析;(2)

解析试题分析:(1)要证明线线垂直,可考虑先证明直线和平面垂直,该题先证明平面,从而得到,又,故可证明平面,进而证明;(2)求直线和平面所成的角,需先找后求,同时要有必要的证明过程,该题中直线和平面所成的角不易找到,故可采取转化法,先求点到平面的距离,再利用,求得所求角的正弦值,进而求余弦值.故求点到平面的距离成为解题关键,可利用等体积转化法进行.
试题解析:(1)证明:∵ 平面平面,∴.
平面,平面,
平面.
平面
,                                    3分
, ,平面,
平面,∴平面.
平面,∴.                6分
(2)解:由(1)知,,又
的中点,在Rt△中, 得
在Rt△中,得,
.
设点到平面的距离为,由,    8分
.解得,           10分
设直线与平面所成的角为
,                               12分
.
∴直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在五面体ABCDEF中,四边形ABCD是矩形,DE⊥平面ABCD.

(1)求证:AB∥EF;
(2)求证:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中点.

求证:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱柱中,,点分别是的中点.
 
(1)求证:平面∥平面
(2)求证:平面⊥平面
(3)若,求异面直线所成的角。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.

求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.

(1)求证:BF∥平面A′DE;
(2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.

(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成的角;
(3)设点E在棱PC上,,若DE∥平面PAB,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2.

证明:(1)A1E∥AB.
(2)平面CC1FB⊥平面AA1EB.

查看答案和解析>>

同步练习册答案