精英家教网 > 高中数学 > 题目详情

【题目】葫芦岛市某工厂党委为了研究手机对年轻职工工作和生活的影响情况做了一项调查:在厂内用简单随机抽样方法抽取了30名25岁至35岁的职工,对其“每十天累计看手机时间”(单位:小时)进行调查,得到茎叶图如下.所抽取的男职工“每十天累计看手机时间”的平均值和所抽取的女生 “每十天累计看手机时间”的中位数分别是( )

A. B. C. D.

【答案】A

【解析】阅读茎叶图可得

男职工看手机时间长度为:8,9,11,12,12,15,17,20,23,23,26,29,35,38,41,

女职工看手机时间长度为:7,9,10,13,14,16,24,25,26,27,28,34,36,38,40,

据此可得所抽取的男职工“每十天累计看手机时间”的平均值为:

,

所抽取的女生 “每十天累计看手机时间”的中位数分别是25.

本题选择A选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来我国电子商务行业迎来蓬勃发展的新机遇,2016年双11期间,某平台的销售业绩高达918亿人民币,与此同时,相关管理部门也推出了针对电商的商品和服务评价体系,现从评价系统中随机选出200次成功的交易,并对其评价结果进行统计,对商品的好评率为,对服务的好评率为,其中对商品和服务都做出好评的交易为80次.

在犯错误概率不超过( )的前提下,认为商品好评与服务好评有关.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2S△ABC·.

(1)求角B的大小;

(2)若b=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴的极坐标系下,曲线的方程为.

1)求曲线的普通方程和曲线的直角坐标方程;

2)设曲线和曲线的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,抛物线y2 (a+c)x与椭圆交于B,C两点,若四边形ABFC是菱形,则椭圆的离心率等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求和函数的极值;

(2)若关于的方程有3个不同实根,求实数的取值范围;

(3)直线为曲线的切线,且经过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)求函数的单调区间;

(2)设是否存在极值,若存在,请求出极值;若不存在,请说明

理由;

(3)当时.证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂的甲、乙两个车间的名工人进行了劳动技能大比拼,规定:技能成绩大于或等于分为优秀, 分以下为非优秀,统计成成绩后,得到如下的列联表,且已知在甲、乙两个车间工人中随机抽取人为优秀的概率为.

优秀

非优秀

合计

甲车间

乙车间

合计

(1)请完成上面的列联表;

(2)根据列联表的数据,若按的可靠性要求,能否认为“成绩与车间有关系”?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记表示中的最大值,如,已知函数.

1)求函数上的值域;

2)试探讨是否存在实数, 使得恒成立?若存在,求的取值范围;

若不存在,说明理由.

查看答案和解析>>

同步练习册答案