精英家教网 > 高中数学 > 题目详情

【题目】电视台播放甲乙两套连续剧每次播放连续剧时需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:

连续剧播放时长(分钟)

广告播放时长分钟

收视人次

70

5

60

60

5

25

已知电视台每周安排的甲乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用表示每周计划播出的甲乙两套连续剧的次数

(1)列出满足题目条件的数学关系式并画出相应的平面区域

2问电视台每周播出甲乙两套连续剧各多少次才能使收视人次最多

【答案】(1)见解析;(2)每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.

【思路分析】(1)根据题目中的条件列出相应的不等式,同时注意需满足这一隐含条件,建立不等式组,画出平面区域;(2)根据的几何意义即可求最值.

【解析】(1)由已知,满足的数学关系式为,即(2分)

该二元一次不等式组所表示的平面区域为图1中阴影部分内的整点(包括边界):(5分)

(2)设总收视人次为万,则目标函数为

考虑,将它变形为,这是斜率为,随变化的一族平行直线.

为直线在轴上的截距,当取得最大值时,的值最大.(6分)

满足约束条件,所以由图2可知,当直线经过可行域上的点M时,截距最大,即最大.(8分)

解方程组得点M的坐标为

所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(10分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N,数列{bn}满足an=4log2bn+3,n∈N.

(1)求an,bn

(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =( sinx,2), =(2cosx,cos2x),函数f(x)=
(1)求函数f(x)的值域;
(2)在△ABC中,角A,B,C和边a,b,c满足a=2,f(A)=2,sinB=2sinC,求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点A(﹣2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若 =﹣2,求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数, ),直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)为曲线上任意一点, 为直线任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体中, 是棱的中点.

)求直线和平面所成角的正弦值.

)在棱上是否存在一点,使平面?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加数学文化知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:

(Ⅰ)用茎叶图表示这两组数据;

(Ⅱ)现要从中选派一人参加正式比赛,从所抽取的两组数据求出甲、乙两位同学的平均值和方差,据此你认为选派哪位同学参加比赛较为合适?

(Ⅲ)若对加同学的正式比赛成绩进行预测,求比赛成绩高于80分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(Ⅰ)当时,对于任意的,求的最小值;

(Ⅱ)若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图:

求分数在的频率及全班人数;

求分数在之间的频数,并计算频率分布直方图中间矩形的高;

若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.

查看答案和解析>>

同步练习册答案