精英家教网 > 高中数学 > 题目详情
9.不等式0.3${\;}^{{x}^{2}+x+1}$>0.3${\;}^{-2{x}^{2}+5x}$的解集为($\frac{1}{3}$,1).

分析 由指数函数的性质把不等式0.3${\;}^{{x}^{2}+x+1}$>0.3${\;}^{-2{x}^{2}+5x}$转化为3x2-4x+1<0,由此能求出不等式0.3${\;}^{{x}^{2}+x+1}$>0.3${\;}^{-2{x}^{2}+5x}$的解集.

解答 解:∵0.3${\;}^{{x}^{2}+x+1}$>0.3${\;}^{-2{x}^{2}+5x}$,
∴x2+x+1<-2x2+5x,
∴3x2-4x+1<0,
解方程3x2-4x+1=0,得${x}_{1}=\frac{1}{3}$,x2=1,
∴不等式0.3${\;}^{{x}^{2}+x+1}$>0.3${\;}^{-2{x}^{2}+5x}$的解集为($\frac{1}{3}$,1).
故答案为:($\frac{1}{3}$,1).

点评 本题考查指数不等式的解集的求法,是基础题,解题时要认真审题,注意指数函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若x∈R,n∈N*,规定:$H_x^n=x(x+1)(x+2)…(x+n-1)$,例如:$H_{-4}^4=(-4)•(-3)•(-2)•(-1)=24$,则函数$f(x)=x•H_{x-1}^3$的图象(  )
A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个椭圆的半焦距为2,离心率e=$\frac{2}{3}$,那么它的长轴长是(  )
A.3B.$\sqrt{5}$C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数$f(x)=2{({log_2}x)^2}-2a{log_2}x+b$,已知当$x=\frac{1}{2}$时,f(x)有最小值-8.
(1)求a与b的值;
(2)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(1+tan215°)cos215°的值等于(  )
A.$\frac{1-\sqrt{3}}{2}$B.1C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=x+$\frac{2}{x}$.
(1)判断f(x)的奇偶性,并证明你的结论.
(2)用函数单调性的定义证明函数f(x)在[$\sqrt{2}$,+∞)内是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=loga(6-ax)在[0,1]上为减函数,则a的取值范围是(  )
A.(0,1)B.(1,6]C.(1,6)D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=2cos2$\frac{x}{2}$-3的最小值和周期分别为(  )
A.-1,πB.-3,2πC.-1,2πD.-3,π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知三边a=5,b=12,c=13,判断三角形是锐角三角形、直角三角形还是钝角三角形.

查看答案和解析>>

同步练习册答案