精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D为AB的中点.
(1)求证:BC1⊥平面AB1C;
(2)求证:BC1平面A1CD.
证明:(1)∵三棱柱ABC-A1B1C1为直三棱柱
∴CC1⊥平面ABC;
又∵AC?平面ABC
∴CC1⊥AC
又∵AC⊥BC,CC1∩BC=C
∴AC⊥平面B1C1CB
又∵B1C?平面B1C1CB
∴B1C⊥AC
又∵BC=BB1
∴平面B1C1CB为正方形,
∴B1C⊥BC1,又∵B1C∩AC=C
∴BC1⊥平面AB1C;
(2)连接BC1,连接AC1于E,连接DE,E是AC1中点,
D是AB中点,则DEBC1
又DE?面CA1D1,BC1?面CA1D1
∴BC1面CA1D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4(单位:cm),E为PA的中点.
(1)证明:DE平面PBC;
(2)证明:DE⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD中,∠B=∠D=90°,AD=CD=
6
,∠BAC=60°,E为AC的中点;现将△ACD沿对角线AC折起,使点D在平面ABC上的射影H落在BC上.
(1)求证:AB⊥平面BCD;
(2)求三棱锥D-ABE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)证明:AE⊥PD;
(2)设AB=2,若H为线段PD上的动点,EH与平面PAD所成的最大角的正切值为
6
2
,求此时异面直线AE和CH所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面是AB=2,BC=3的矩形,侧面PAB是等边三角形,且侧面PAB⊥底面ABCD.
(Ⅰ)求证:面PAD⊥面PAB.
(Ⅱ)求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,AB=
2
,BC=1,∠BCC1=
π
3

(1)求证:C1B⊥平面ABC;
(2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,ABCD,AD⊥DC,PD=AD=DC=2AB,则异面直线PA与BC所成角的余弦值为(  )
A.
15
5
B.
10
5
C.-
10
5
D.
10
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大小;
(Ⅲ)求点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方形AA1B1B中,AB=2AA1,C,C1分别AB,A1B1是的中点(如图1).将此长方形沿CC1对折,使平面AA1C1C⊥平面CC1B1B(如图2),已知D,E分别是A1B1,CC1的中点.
(1)求证:C1D平面A1BE;
(2)求证:平面A1BE⊥平面AA1B1B.

查看答案和解析>>

同步练习册答案