精英家教网 > 高中数学 > 题目详情
已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=5,则(++…+)等于(    )

A.2                 B.               C.1                D.

解析:令bn=log2(an-1),则{bn}成等差数列,b1=log22=1,b2=log24=2,则bn=n=log2(an-1),

∴an=2n+1,

an+1-an=2n+1+1-(2n+1)=2n.

∴原式=(++…+)=1.

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9
(1)求数列{an}的通项公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步练习册答案