精英家教网 > 高中数学 > 题目详情

【题目】已知(e为自然对数的底数,e=2.71828……),函数图象关于直线对称,函数的最小值为m.

(I)求曲线的切线方程;

(Ⅱ)求证:

(III)求函数的最小值.

【答案】(I)()见解析(III)

【解析】

(I)由题意可知 ,再利用导数的几何意义求切线方程. (),求出函数的最小值,再根据得到 . (III)先利用导数求得再证明,所以.

(I)由题意可知

,所以,所以切线方程为

()

,因为,又因为上单增

所以存在唯一的,使得,即

,所以单减,同理单增,

所以

因为,所以

所以因为,所以

(III)因为,,所以

因为 ,所以存在唯一的,使得

,即

单减, 单增

所以

因为 所以

所以

,所以

因为

所以 ,可得,所以

所以,所以,即

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在点处的切线.

(1)求证:

(2)设,其中.若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)讨论函数上的单调性;

2)若,当时,,且有唯一零点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的右焦点,椭圆上任意一点 到点的距离与点到直线

的距离之比为

(1)求直线方程;

(2)为椭圆的左顶点,过点的直线交椭圆两点,直线与直线分别相交于两点,以为直径的圆是否恒过一定点?若是,求出定点坐标;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.

其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.

1:一级滤芯更换频数分布表

一级滤芯更换的个数

8

9

频数

60

40

2:二级滤芯更换频数条形图

100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.

1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;

2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;

3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图如图,(1)画出该几何体的直观图(2)求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点P所在平面外一点,MNK分别ABPCPA的中点,平面平面

1)求证:平面PAD

2)直线PB上是否存在点H,使得平面平面ABCD,并加以证明;

3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是过点夹角为的两条直线,且与圆心为,半径长为的圆分别相切,设圆周上一点的距离分别为,那么的最小值为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求点C到平面C1DE的距离.

查看答案和解析>>

同步练习册答案