精英家教网 > 高中数学 > 题目详情
17.若一抛物线的顶点在原点,焦点为F(0,$\frac{1}{2}$),在该抛物线的方程为(  )
A.y2=$\frac{1}{8}$xB.y2=2xC.y=2x2D.y=$\frac{1}{2}$x2

分析 利用抛物线的焦点坐标,抛物线的定义求解抛物线方程即可.

解答 解:一抛物线的顶点在原点,焦点为F(0,$\frac{1}{2}$),
可得p=1,
该抛物线的方程为:y=$\frac{1}{2}$x2
故选:D.

点评 本题考查抛物线的简单性质以及抛物线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列四个函数中,在(0,+∞)上是增函数的是(  )
A.f(x)=-$\frac{1}{x+1}$B.f(x)=x2-3xC.f(x)=3-xD.f (x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)在定义域内满足:
(1)对于任意不相等的x1,x2,有x1f(x2)+x2f(x1)>x1f(x1)+x2f(x2);
(2)存在正数M,使得|f(x)|≤M,则称函数f(x)为“单通道函数”,给出以下4个函数:
①f(x)=sin(x+$\frac{x}{4}$)+cos(x+$\frac{π}{4}$),x∈(0,π);
②g(x)=lnx+ex,x∈[1,2];
③h(x)=x3-3x2,x∈[1,2];
④φ(x)=$\left\{\begin{array}{l}{-{2}^{x},-1≤x<0}\\{lo{g}_{\frac{1}{2}}(x+1)-1,0<x≤1}\end{array}\right.$,其中,“单通道函数”有①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设{an}是正数等差数列,{bn}是正数等比数列,且a1=b1,a11=b11,则(  )
A.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}>lg{a_6}>lg{b_6}$B.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{a_6}≥lg{b_6}$
C.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}≥lg{b_6}≥lg{a_6}$D.$lg\sqrt{\frac{{{a_1}^2+{a_{11}}^2}}{2}}<lg{a_6}<lg{b_6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列${a_1}=\frac{1}{3}$、${a_1}=\frac{1}{3}$满足:${a_1}=\frac{1}{3}$,an+bn=1,${b_{n+1}}=\frac{1}{{2-{b_n}}}$.
(1)求证:数列{$\frac{1}{{b}_{n}-1}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知B=2A,∠ACB的平分线CD把三角形分成面积为4:3的两部分,则cosA=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=sin2x-\sqrt{3}cos2x$的图象的一条对称轴方程为(  )
A.$x=\frac{π}{12}$B.$x=-\frac{π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三个函数f(x)=2x+x,g(x)=x-3,h(x)=log2x+x 的零点依次为a,b,c,则下列结论正确的是(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=3x,g(x)=|x+a|-3,其中a∈R.
(Ⅰ)若函数h(x)=f[g(x)]的图象关于直线x=2对称,求a的值;
(Ⅱ)给出函数y=g[f(x)]的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案