精英家教网 > 高中数学 > 题目详情
若双曲线
x2
16
-
y2
b2
=1(b>0)的一个顶点到与此顶点较远的一个焦点的距离为9,则双曲线的离心率是(  )
A、
4
3
B、
5
3
C、
5
4
D、
3
2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求出双曲线的a=4,由条件可知c+a=9,即可得到c,再由离心率公式,即可得到所求值.
解答: 解:双曲线
x2
16
-
y2
b2
=1(b>0)的a=4,c=
16+b2

双曲线的一个顶点到与此顶点较远的一个焦点的距离为9,
即有c+a=9,即
16+b2
+4=9,
解得,b=3,c=5.
即有离心率为e=
c
a
=
5
4

故选C.
点评:本题考查双曲线的方程和性质,考查离心率的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(3,2),
b
=(-1,1),向量
m
与3
a
-2
b
平行,|
m
|=4
137
,求向量
m
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
tanxx≥0
2xx<0
,则不等式f(x)<
3
的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,已知a1=1,n≥2时,an=
1
3
an-1+
2
3n-1
-
2
3
.数列{bn}满足:bn=3n-1(an+1).
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+
1
x
),且f(x)在x=
1
2
处的切线方程为y=g(x).
(1)求y=g(x)的解析式;
(2)证明:当x>0时,恒有f(x)≥g(x);
(3)证明:若ai>0,且
n
i=1
ai=1,则(a1+
1
a1
)(a2+
1
a2
)…(an+
1
an
)≥(
n2+1
n
n(1≤i≤n,i,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

(a1+a2)(b1+b2+b3)(c1+c2+c3+c4)展开式中,形如axbxcx的项称为同序项,形如axbxcy,axbycx,aybxcx(x≠y)的项称为次序项,如a2b2c2q是一个同序项,a1b1c3是一个次序项.从展开式中任取两项,恰有一个同序项和一个次序项的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C1:x2+y2=9;⊙C2:(x-4)2+(y-6)2=1,两圆的内公切线交于P1点,外公切线交于P2点,若
P1C1
C1P2
,则λ等于(  )
A、-
9
16
B、-
1
2
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD||BC,PD⊥底面ABCD,
∠ADC=90°,AD=2BC,Q为AD的中点,M为棱PC的中点.
(Ⅰ)证明:PA∥平面BMQ;
(Ⅱ)已知PD=DC=AD=2,求点P到平面BMQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的是(  )
A、若x∈C,则方程x3=2只有一个根
B、若z1∈C,z2∈C且z1-z2>0,则z1>z2
C、若z∈R,则z•
.
z
=|z|2
不成立
D、若z∈C,且z2<0,那么z一定是纯虚数

查看答案和解析>>

同步练习册答案