精英家教网 > 高中数学 > 题目详情

【题目】已知梯形ABCD中,ADBCABC =BAD =AB=BC=2AD=4EF分别是ABCD上的点,EFBCAE = GBC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF

1)若以FBCD为顶点的三棱锥的体积记为,求的最大值;

2)当 取得最大值时,求二面角D-BF-C的余弦值.

【答案】(1) 有最大值为;(2) 二面角的余弦值为:-.

【解析】试题分析:(1)由平面 ,可得,进而由面面垂直的性质定理得到平面,进而建立空间坐标系,可得的解析式,根据二次函数的性质,易求出有最大值;(2)根据(1)的结论平面的一个法向量为,利用向量垂直数量积为零列方程组求出平面的法向量,代入向量夹角公式即可得到二面角的余弦值.

试题解析:(1)∵平面平面,AE⊥EF,

∴AE⊥面平面,AE⊥EF,AE⊥BE,又BE⊥EF,故可如图建立空间坐标系E-xyz.则A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),

E(0,0,0)∵AD∥面BFC,

所以VA-BFC

,即有最大值为

(2)设平面DBF的法向量为,∵AE=2, B(2,0,0),

D(0,2,2),F(0,3,0),∴ (-2,2,2),

,即

x=3,则y=2,z=1,∴

面BCF的一个法向量为

则cos<>=.

由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为:-

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究性学习小组为了解学生每周用于体育锻炼时间的情况,在甲、乙两所学校随机抽取了各50名学生,做问卷调查,并作出如下频率分布直方图:

(1)根据直方图计算:两所学校被抽取到的学生每周用于体育锻炼时间的平均数;
(2)在这100名学生中,要从每周用于体育锻炼时间不低于10小时的学生中选出3人,该3人中来自乙学校的学生数记为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2的菱形,AC⊥CB,BC=1.

(1)证明:AC1⊥平面A1BC;
(2)求二面角B﹣A1C﹣B1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为p2= ,定点A(0,﹣ ),F1 , F2是圆锥曲线C的左、右焦点,直线l经过点F1且平行于直线AF2
(1)求圆锥曲线C的直角坐标方程和直线l的参数方程;
(2)若直线l与圆锥曲线C交于M,N两点,求|F1M||F1N|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当=-1时,求的单调区间及值域;

(2)若在()上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PEC

(2)求证:平面PCD⊥平面PEC;

(3)求三棱锥C-BEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,判断的单调性,并用定义证明;

(2)若恒成立,求的取值范围;

(3)讨论的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,则实数a的取值范围是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解男性家长和女性家长对高中学生成人礼仪式的接受程度,某中学团委以问卷形式调查了位家长,得到如下统计表:

男性家长

女性家长

合计

赞成

无所谓

合计

1)据此样本,能否有的把握认为接受程度与家长性别有关?说明理由;

2)学校决定从男性家长中按分层抽样方法选出人参加今年的高中学生成人礼仪式,并从中选人交流发言,求发言人中至多一人持赞成态度的概率.

查看答案和解析>>

同步练习册答案