精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱台的底面是正三角形,平面平面.

(1)求证:

(2)若,求直线与平面所成角的正弦值.

【答案】(Ⅰ)见证明;(Ⅱ)

【解析】

(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证两两垂直,以分别为轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案。

解:(Ⅰ)取的中点为,连结.

是三棱台得,平面平面,从而.

,∴

∴四边形为平行四边形,∴.

的中点,

,∴.

∵平面平面,且交线为平面

平面,而平面

.

(Ⅱ)连结.

是正三角形,且为中点,则.

由(Ⅰ)知,平面

两两垂直.

分别为轴,建立如图所示的空间直角坐标系.

,则

.

设平面的一个法向量为.

可得,.

,则,∴.

与平面所成角为,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴椭圆”,若椭圆右焦点坐标为,且过点.

1)求椭圆的“伴椭圆”方程;

2)在椭圆的“伴椭圆”上取一点,过该点作椭圆的两条切线,证明:两线垂直;

3)在双曲线上找一点作椭圆的两条切线,分别交于切点使得,求满足条件的所有点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形中,,四边形为矩形,平面平面.

1)求证:平面

2)点在线段上运动,设平面与平面所成二面角的平面角为),试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合是实数集的子集,如果正实数满足:对任意都存在使得则称为集合的一个“跨度”,已知三个命题:

(1)若为集合的“跨度”,则也是集合的“跨度”;

(2)集合的“跨度”的最大值是4;

(3)是集合的“跨度”.

这三个命题中正确的个数是()

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张军自主创业,在网上经营一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120/千克、80/千克、70/千克、40元千克,为增加销量,张军对这四种干果进行促销:一次购买干果的总价达到150元,顾客就少付x(2xZ).每笔订单顾客网上支付成功后,张军会得到支付款的80%.

①若顾客一次购买松子和腰果各1千克,需要支付180元,则x=________

②在促销活动中,为保证张军每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,底面是直角三角形,为侧棱的中点.

(1)求异面直线所成角的余弦值;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个无穷数列分别满足

其中,设数列的前项和分别为

1)若数列都为递增数列,求数列的通项公式;

2)若数列满足:存在唯一的正整数),使得,称数列坠点数列

若数列“5坠点数列,求

若数列坠点数列,数列坠点数列,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案