精英家教网 > 高中数学 > 题目详情
(2012•闸北区一模)若函数f(x)的图象与对数函数y=log4x的图象关于直线x+y=0对称,则f(x)的解析式为f(x)=
y=-4-x
y=-4-x
分析:先设f(x)上一点(x,y),求这个点关于x+y=0的对称点,则根据题意该对称点在函数y=log4x的图象上,满足函数y=log4x的解析式,从而可求出点(x,y)的轨迹方程
解答:解:设函数f(x)的图象上一点(x,y),则点(x,y)关于x+y=0的对称点(x',y')在对数函数y=log4x的图象
由题意知
y′-y
x′-x
=1
x′+x
2
+
y′+y
2
=0
,解得x'=-y,y'=-x
又∵点(x',y')在对数函数y=log4x的图象
∴-x=log4(-y)
∴-y=4-x
∴y=-4-x
故答案为:y=-4-x
点评:本题考查函数的图象与性质,求函数的解析式.解题的关键是会求点个关于直线的对称点.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闸北区一模)曲线y=-
4-x2
(x≤0)
的长度为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区一模)已知函数f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求实常数a的取值范围;
(2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区一模)方程1+x-2=0的全体实数解组成的集合为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区一模)不等式2>
1
x
的解集为
{x|x<0,或x>
1
2
}
{x|x<0,或x>
1
2
}

查看答案和解析>>

同步练习册答案