精英家教网 > 高中数学 > 题目详情
1.已知数列{an}的前n项和为Sn,满足Sn=2(an-n),n∈N+*
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和,求Tn

分析 (1)由Sn=2(an-n)=2an-2n,n∈N+*,得Sn-1=2an-1-2(n-1),n≥2,从而an+2=2(an-1+2),n≥2,由此能证明{an+2}是首项为4,公比为2的等比数列,并能求出{an}的通项公式.
(2)由bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,由此利用裂项求和法能求出数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和.

解答 证明:(1)∵数列{an}的前n项和为Sn,满足Sn=2(an-n)=2an-2n,n∈N+*
∴Sn-1=2an-1-2(n-1),n≥2,
∴Sn-Sn-1=an=2an-2an-1-2,n≥2,
∴an+2=2(an-1+2),n≥2,
当n=1时,S1=2a1-2=a1,解得a1=2,a1+2=4,
∴{an+2}是首项为4,公比为2的等比数列.
∴${a}_{n}+2=4×{2}^{n-1}={2}^{n+1}$,
∴${a}_{n}={2}^{n+1}-2$.
(2)∵bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和:
Tn=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$
=$\frac{1}{2}-\frac{1}{n+2}$.

点评 本题考查等比数列的证明和数列的通项公式及前n项和的求法,是中档题,解题时要认真审题,注意构造法和裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知抛物线x2=2py(p>0)与直线3x-2y+1=0交于A,B两点,$|{AB}|=\frac{5}{8}\sqrt{13}$,点M在抛物线上,MA⊥MB.
(Ⅰ) 求p的值;
(Ⅱ) 求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x2+2(a-1)x+1在(-∞,2]上是单调递减的,则a的取值范围是(  )
A.a≥-1B.a>1C.a>2D.a≤-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,点D在AC上,BC⊥AD,BC⊥BD,若BD=7,AB=8,sin∠ABC=$\frac{13}{14}$,则AD的长为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等比数列{an}中,有a3a11=4a7,数列{bn}是等差数列,且b7=a7,则b5+b9=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义:若函数f(x)与g(x)有共同的解析式和值域,则称f(x)与g(x)是“相似函数”,若f(x)=x2+1,x∈{±1,±2},则与f(x)相似的函数有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对某校小学生进行心理障碍测试得到如下的2×2列联表:
有心理障碍没有心理障碍总计
女生1030
男生7080
总计20110
将表格填写完整,试说明心理障碍与性别是否有关?附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(X2≥x00.150.100.050.0250.010
x02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义:称$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”,已知数列{an}的前n项的“均倒数”为$\frac{1}{n+2}$.
(1)求{an}的通项公式
(2)设Cn=$\frac{{a}_{n}}{{3}^{n}}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.三棱锥P-ABC,PA=PB=PC=2,∠APC=∠APB=∠BPC=$\frac{π}{6}$,一只蚂蚁从A处出发沿三棱锥的侧面爬一周,最短路线为$2\sqrt{2}$.

查看答案和解析>>

同步练习册答案