分析 (1)由Sn=2(an-n)=2an-2n,n∈N+*,得Sn-1=2an-1-2(n-1),n≥2,从而an+2=2(an-1+2),n≥2,由此能证明{an+2}是首项为4,公比为2的等比数列,并能求出{an}的通项公式.
(2)由bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,由此利用裂项求和法能求出数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和.
解答 证明:(1)∵数列{an}的前n项和为Sn,满足Sn=2(an-n)=2an-2n,n∈N+*,
∴Sn-1=2an-1-2(n-1),n≥2,
∴Sn-Sn-1=an=2an-2an-1-2,n≥2,
∴an+2=2(an-1+2),n≥2,
当n=1时,S1=2a1-2=a1,解得a1=2,a1+2=4,
∴{an+2}是首项为4,公比为2的等比数列.
∴${a}_{n}+2=4×{2}^{n-1}={2}^{n+1}$,
∴${a}_{n}={2}^{n+1}-2$.
(2)∵bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和:
Tn=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$
=$\frac{1}{2}-\frac{1}{n+2}$.
点评 本题考查等比数列的证明和数列的通项公式及前n项和的求法,是中档题,解题时要认真审题,注意构造法和裂项求和法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a≥-1 | B. | a>1 | C. | a>2 | D. | a≤-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
有心理障碍 | 没有心理障碍 | 总计 | |
女生 | 10 | 30 | |
男生 | 70 | 80 | |
总计 | 20 | 110 |
P(X2≥x0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
x0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com