精英家教网 > 高中数学 > 题目详情
(2013•房山区一模)已知函数f(x)的定义域是D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:
①f(0)=0;  
f(
x
5
)=
1
2
f(x)
;  
③f(1-x)=1-f(x).
f(
4
5
)
=
1
2
1
2
f(
1
12
)
=
1
4
1
4
分析:由①③可知,f(1)=1,f(
1
2
)=
1
2
再由②即可求得f(
4
5
)=f(
1
5
)=
1
2
;再由②可求得f(
4
25
)=
1
4
=f(
1
25
),而
1
25
1
12
4
25
,利用函数f(x)在[0,1]上为非减函数,即可求得f(
1
12
).
解答:解:∵f(0)=0,f(1-x)=1-f(x),
∴f(1)=1-f(0)=1,
又f(
x
5
)=
1
2
f(x),
∴f(
1
5
)=
1
2
f(1)=
1
2

∴f(
1
25
)=
1
4
;①
1
5
+
4
5
=1,
∴由f(x)+f(1-x)=1得:f(
4
5
)=
1
2

∴f(
4
25
)=
1
4
.②
1
25
1
12
4
25
,函数f(x)在[0,1]上为非减函数,
∴由①②知,f(
1
12
)=
1
4

故答案为:
1
2
1
4
点评:本题考查函数的值,着重考查观察、分析、与转化、运算与推理的能力,求得f(
4
25
)=
1
4
=f(
1
25
)是关键也是难点,属于难题.两边夹的方式求值技巧不易掌握,要好好体会!
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•房山区一模)设集合M是R的子集,如果点x0∈R满足:?a>0,?x∈M,0<|x-x0|<a,称x0为集合M的聚点.则下列集合中以1为聚点的有(  )
{
n
n+1
|n∈N}
;    
{
2
n
|n∈N*}
;    
③Z;    
④{y|y=2x}.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知函数f(x)=
1
2
x2-alnx-
1
2
(a∈R,a≠0)

(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若对任意的x∈[1,+∞),都有f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)已知全集U=R,集合M={x|x≤1},N={x|x2>4},则M∩(?RN)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)执行如图所示的程序框图.若输出S=15,则框图中①处可以填入(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•房山区一模)在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD=
12
AD=1
,PA=PD,E,F为AD,PC的中点.
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)若PC与AB所成角为45°,求PE的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.

查看答案和解析>>

同步练习册答案