【题目】已知椭圆与轴,轴的正半轴分别交于A,B两点,原点O到直线AB的距离为该椭圆的离心率为
(1)求椭圆的方程
(2)是否存在过点P(的直线与椭圆交于M,N两个不同的点,使成立?若存在,求出的方程;若不存在,说明理由。
【答案】(1);(2)存在符合条件的直线的方程为.
【解析】
试题(1)由题意得,直线的方程为由及,得即可求出椭圆的方程为;(2),.①
当直线的斜率不存在时,,,易知符合条件,此时直线的方程为当直线的斜率存在时,设直线的方程为,代入得
由韦达定理即可求出结果.
试题解析:解:(1)由题意得,直线的方程为(1分)
由及,得(3分)
所以椭圆的方程为(4分)
(2),. ① (6分)
当直线的斜率不存在时,,,易知符合条件,此时直线的方程为(8分)
当直线的斜率存在时,设直线的方程为,代入得
由,解得.
设,则, ②
, ③ (10分)
由①得④
由②③④消去,得,即,无解.
综上存在符合条件的直线(12分).
科目:高中数学 来源: 题型:
【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按进行奖励,没超出部分仍按销售利润的进行奖励记奖金总额为单位:万元,销售利润为单位:万元.
1写出该公司激励销售人员的奖励方案的函数表达式;
2如果业务员老张获得万元的奖金,那么他的销售利润是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正整数,其前n项和为Sn , an+1= ,若S3=10,则S180=( )
A.600或900
B.900或560
C.900
D.600
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为 ,曲线C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.
(Ⅰ)求线段OQ的长;
(Ⅱ)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数 的图象向左平移 个单位,得到函数g(x)的图象,则下列关于g(x)叙述正确的是( )
A.g(x)的最小正周期为2π
B.g(x)在 内单调递增
C.g(x)的图象关于 对称
D.g(x)的图象关于 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】考拉兹猜想又名3n+1猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.曲线C1的极坐标方程为ρ﹣2cosθ=0,曲线C1的参数方程为(t是参数,m是常数)
(Ⅰ)求C1的直角坐标方程和C2的普通方程;
(Ⅱ)若C2与C1有两个不同的公共点,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com