精英家教网 > 高中数学 > 题目详情
8.已知sinα+cosα=$\frac{1}{4}$,则sin2α=-$\frac{15}{16}$.

分析 把已知等式两边平方,利用完全平方公式及同角三角函数间基本关系化简,再利用二倍角的正弦函数公式变形,即可求出sin2α的值.

解答 解:把已知等式两边平方得:(sinα+cosα)2=1+2sinαcosα=$\frac{1}{16}$,
即2sinαcosα=-$\frac{15}{16}$,
则sin2α=2sinαcosα=-$\frac{15}{16}$,
故答案为:-$\frac{15}{16}$

点评 此题考查了二倍角的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.圆A:x2+y2+4x+2y+1=0与圆B:x2+y2-2x-6y+1=0的位置关系是外切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,已知点A(-2,0),点B是圆C:(x-2)2+y2=4上的点,点M为AB的中点,若直线$l:y=kx-\sqrt{5}k$上存在点P,使得∠OPM=30°,则实数k的取值范围为[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知抛物线过点(a,2),焦点到准线的距离为-2a,则抛物线的标准方程为x2=32y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列抛物线的标准方程.
(1)焦点在y轴上,焦点到准线距离为1;
(2)焦点在直线2x-y+2=0上;
(3)抛物线上的点M(-3,m)到焦点的距离等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x.
(I)求函数f(x)的单调递增区间;
(2)若f($\frac{θ}{2}$+$\frac{5π}{12}$)=-$\frac{\sqrt{3}}{12}$,0<θ<$\frac{π}{2}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.当m在什么范围内变化时,不等式3${\;}^{{x}^{2}+27lo{{g}_{m}}^{3}}$>m3对一切x∈R恒定立?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若方程x+y-4$\sqrt{x+y}$+2k=0表示两条不同直线,则k的取值范围是(  )
A.k<2B.k≤2C..0≤k<2D.0≤k≤2

查看答案和解析>>

同步练习册答案