分析 由于sinα-sinβ=-$\frac{1}{2}$①,cosα-cosβ=$\frac{1}{2}$②,利用①2+②2可求得cos(α-β)=$\frac{3}{4}$.
解答 解:∵sinα-sinβ=-$\frac{1}{2}$①,cosα-cosβ=$\frac{1}{2}$②,
∴①2+②2得:sin2α+sin2β-2sinαsinβ+cos2α+cos2β-2cosαcosβ=$\frac{1}{2}$,
即2-2cos(α-β)=$\frac{1}{2}$,
∴cos(α-β)=$\frac{3}{4}$;
点评 本题考查两角和与差的正弦函数的应用,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com