精英家教网 > 高中数学 > 题目详情
已知函数f(x)的图象关于点(a,b)对称,则有f(x)+f(2a-x)=2b对任意定义域内的x均成立.
(1)若函数f(x)=
x2+mx+mx
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)=-x2+nx+1(x>0)在(1)的条件下,若对实数x>0及t>0时恒有不等式g(x)<f(t)成立,求实数n的取值范围.
分析:(1)利用函数f(x)=
x2+mx+m
x
的图象关于点(0,1)对称,可得f(x)+f(-x)=2,代入化简,可得实数m的值;
(2)根据(1)中函数的解析式,求出t>0时f(t)的最小值,利用二次函数性分类讨论可求得g(x)的最大值,根据对实数x>0及t>0时恒有不等式g(x)<f(t)成立,得g(x)max<f(t)min,由此可求实数n的取值范围.
解答:解:(1)由题设,∵函数f(x)=
x2+mx+m
x
的图象关于点(0,1)对称,
∴f(x)+f(-x)=2,
x2+mx+m
x
+
x2-mx+m
-x
=2,
∴m=1;
(2)由(1)得f(t)=t+
1
t
+1(t>0),
当t>0时,t+
1
t
+1≥2
t•
1
t
+1=3,所以其最小值为f(1)=3,
g(x)=-x2+nx+1=-(x-
n
2
)2+1+
n2
4

①当
n
2
<0,即n<0时,g(x)max=1+
n2
4
<3,∴n∈(-2
2
,0),
②当
n
2
≥0,即n≥0时,g(x)max<1<3,∴n∈[0,+∞),
由①②得n∈(-2
2
,+∞).
点评:本题考查函数与方程的综合应用,考查恒成立条件下求参数取值范围问题,考查分类讨论思想,恒成立问题基本思路是转化为求函数的最值问题解决,本题运用基本不等式及二次函数性质求得函数最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象有且仅有由五个点构成,它们分别为(1,2),(2,3),(3,3),(4,2),(5,2),则f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,2an+1=
2n,n为奇数
f(an),n为偶数

(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于原点对称,且当x<0时,f(x)=2x-4,那么当x>0时,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知函数f(x)的图象过点(
π
4
,-
1
2
),它的导函数f′(x)=Acos(ωx+φ)(x∈R)的图象的一部分如图所示,其中A>0,ω>0,|φ|<
π
2
,为了得到函
数f(x)的图象,只要将函数y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步练习册答案