精英家教网 > 高中数学 > 题目详情
3.在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率v(单位:cm2/s)与管道半径r(单位:cm)的四次方成正比.
(1)写出气流流量速v关于管道半径r的函数解析式;
(2)若气体在半径为3cm的管道中,流量速率为400cm2/s,求该气体通过半径为r的管道时,其流量速率v的表达式;
(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率(精确到1cm3/s).

分析 (1)由题意可得:v=kr4
(2)代入可得k.
(3)利用(2)的表达式即可得出.

解答 解:(1)由题意可得:v=kr4
(2)代入可得:400=k×34,解得k=$\frac{400}{81}$.
∴v=$\frac{400}{81}$r4
(3)$v=\frac{400}{81}×{5}^{4}$=$\frac{250000}{81}$=3086cm3/s).
答:(1)解析式为v=kr4
(2)表达式为v=$\frac{400}{81}$r4
(3)该气体的流量速率约为3086cm3/s).

点评 本题考查了正比例函数的解析式及其应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知两条直线(m+2)x+3my+1=0与(m-2)x+(m+2)y-3=0相互垂直,则m=-2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,已知2Sn=3n-1
(1)求{an}的通项公式;
(2)设数列{bn}满足bn=log3an2+a2n,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|1<x≤2},集合B={x|1≤x<3},则(∁RA)∩B={1}∪(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=max{|x+1|,|x-2|},其中max{p,q}表示p,q两者中较大者,则f(x)的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=3x,x∈[-1,2],则其值域是[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若f($\frac{2}{x}$)=$\frac{1}{3{x}^{2}+1}$,则f(x)=$\frac{{x}^{2}}{12+{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(a)=$\frac{tan(π-α)•cos(2π-α)•sin(\frac{π}{2}+α)}{cos(-α-π)}$
(1)证明:f(α)=sinα;
(2)若f($\frac{π}{2}$-α)=-$\frac{3}{5}$,且α是第二象限角,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.用样本的频率分布来估计总体情况时,下列选项中正确的是(  )
A.估计准确与否值与所分组数有关B.样本容量越大,估计结果越准确
C.估计准确与否值域总体容量有关D.估计准确与否与样本容量无关

查看答案和解析>>

同步练习册答案