精英家教网 > 高中数学 > 题目详情

【题目】将函数的图像向左平移个单位,再将所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数的图像则下面对函数的叙述不正确的是(

A.函数的周期

B.函数的一个对称中心

C.函数在区间内单调递增

D.时,函数有最小值

【答案】B

【解析】

利用函数的图像变换规律,求出的解析式,再利用正弦函数的周期性、单调性和图像的性质,可得结论.

解:由题意可得:函数,将其向左平移个单位可得,再将所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数的图像,可得

故可得函数的周期,A正确;

,可得,故不是函数的一个对称中心,故B错误;

,可得,由余弦函数性质,可得函数单调递增,故C正确;

,可得当时,函数有最小值,解得,D正确;

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

1)求证:平面

2)求平面与平面所成二面角的正弦值;

3)若点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极值;

2)若,且当为自然对数的底数)时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有5个大小相同的球,其中3个白球与2个黑球,现从袋中任意取出一个球,取出后不放回,然后再从袋中任意取出一个球,则第一次为白球、第二次为黑球的概率为(  )

A B C D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,是以为斜边的等腰直角三角形,是等边三角形,,如图②,将沿折起使平面平面分别为的中点,点在棱上,且,点在棱上,且.

1)在棱上是否存在一点,使平面平面?若存在,求的值;若不存在,请说明理由.

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化图表,则以下说法错误的是(

(注:图表一每个城市的条形图从左到右依次是1234月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)

A.3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均

B.4月份仅有三个城市居民消费价格指数超过102

C.四个月的数据显示北京市的居民消费价格指数增长幅度波动较小

D.仅有天津市从年初开始居民消费价格指数的增长呈上升趋势

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.

查看答案和解析>>

同步练习册答案