精英家教网 > 高中数学 > 题目详情
4.已知x+y=2(x>0,y>0),则${x^2}+{y^2}+4\sqrt{xy}$的最大值为6.

分析 利用配方法,结合二次函数的图象与性质,即可求出${x^2}+{y^2}+4\sqrt{xy}$的最大值.

解答 解:∵x>0,y>0,x+y=2,
∴2≥2$\sqrt{xy}$,
∴0<xy≤1,当且仅当x=y=1时取“=”;
∴${x^2}+{y^2}+4\sqrt{xy}$=(x+y)2-2xy+4$\sqrt{xy}$
=22-2${(\sqrt{xy}-1)}^{2}$+2=6-2${(\sqrt{xy}-1)}^{2}$≤6,
即${x^2}+{y^2}+4\sqrt{xy}$的最大值是6.
故答案为:6.

点评 本题考查了基本不等式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=n2-n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)若cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知四棱锥P-ABCD中,平面PAD⊥平面ABCD,其中四边形ABCD为正方形,△PAD为等边三角形,AB=2,则四棱锥P-ABCD外接球的体积为$\frac{{28\sqrt{21}}}{27}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={-1,3},试用列举法表示A+B;
(2)设a1=$\frac{2}{3}$,当n∈N*,且n≥2时,曲线$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$的焦距为an,如果A={a1,a2,…,an},B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,设A+B中的所有元素之和为Sn,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式Sm+Sn-λSk>0恒成立,求实数λ的最大值;
(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,AC=5,$\frac{1}{tan\frac{A}{2}}$+$\frac{1}{tan\frac{C}{2}}$-$\frac{5}{tan\frac{B}{2}}$=0,则BC+AB=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,平行四边形ABCD的两条对角线相交于点M,且$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{MD}$=(  )
A.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在正三棱柱ABC-A1B1C1中,若AB=$\sqrt{2}$BB1,则AB1与BC1所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.顶点在原点,对称轴是坐标轴,且焦点在直线2x+y-2=0上的抛物线方程是y2=4x或x2=8y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为E,过F1于x轴垂直的直线与椭圆C相交,其中一个交点为M(-$\sqrt{3}$,$\frac{1}{2}$).
(I)求椭圆C的方程;
(II)设直线l与椭圆C交于不同的两点A,B.
(i)若直线l过定点(1,0),直线AE,BE的斜率为k1,k2(k1≠0,k2≠0),证明:k1•k2为定值;
(ii)若直线l的垂直平分线与x轴交于一点P,求点P的横坐标xp的取值范围.

查看答案和解析>>

同步练习册答案