精英家教网 > 高中数学 > 题目详情

【题目】设抛物线Cy2=2px(p>0)的焦点为F,准线为lAB为过焦点F且垂直于x轴的抛物线C的弦,已知以AB为直径的圆经过点(-10).

1)求p的值及该圆的方程;

2)设Ml上任意一点,过点MC的切线,切点为N,证明:MFNF.

【答案】1p=2. (x-1)2+y2=4.2)见解析

【解析】

1)根据题意知,点的坐标为(±p),利用直角三角形斜边上的中线等于斜边的一半列出关于的方程,求出,求得圆心F和直径即可;

2)易知直线MN的斜率存在且不为0,设M(-1y0)MN的方程为y=k(x+1)+y0与抛物线方程联立得到关于的一元二次方程,由判别式得到的关系式,将的表达式代入关于的一元二次方程和抛物线方程得到点的坐标,利用平面向量垂直的坐标表示求解即可.

1)由题意知,点的坐标为(±p)

因为以AB为直径的圆经过点(-10)

所以p=-(-1),解得p=2

所以所求圆的圆心为直径AB的中点F(10),直径

所以所求圆的方程为(x-1)2+y2=4.

2)证明:易知直线MN的斜率存在且不为0

M(-1y0)MN的方程为y=k(x+1)+y0,代入C的方程,

ky2-4y+4(y0+k)=0

Δ=16-16k(y0+k)=0,得y0+k=

所以ky2-4y+4(y0+k)==0,解得y=

y=代入C的方程,得x=,即N点的坐标为().

所以=(-2y0)=(-1)

·=2-+y0·=2-+(-k=0

MFNF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若直线与曲线的交点分别为异于原点),当斜率时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】移动支付(支付宝支付,微信支付等)开创了新的支付方式,使电子货币开始普及,为了了解习惯使用移动支付方式是否与年龄有关,对某地200人进行了问卷调查,得到数据如下:60岁以上的人群中,习惯使用移动支付的人数为30人;60岁及以下的人群中,不习惯使用移动支付的人数为40.已知在全部200人中,随机抽取一人,抽到习惯使用移动支付的人的概率为0.6.

1)完成如下的列联表,并判断是否有的把握认为习惯使用移动支付与年龄有关,并说明理由.

习惯使用移动支付

不习惯使用移动支付

合计(人数)

60岁以上

60岁及以下

合计(人数)

200

2)在习惯使用移动支付的60岁以上的人群中,每月移动支付的金额如下表:

每月支付金额

300以上

人数

10

20

30

现采用分层抽样的方法从中抽取9人,再从这9人中随机抽取4人,记4人中每月移动支付金额超过3000元的人数为,求的分布列及数学期望.

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市春节大酬宾,购物满100元可参加一次抽奖活动,规则如下:顾客将一个半径适当的小球放入如图所示的容器正上方的人口处,小球在自由落下的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,顾客相应获得袋子里的奖品.已知小球每次遇到黑色障碍物时,向左向右下落的概率都为.若活动当天小明在该超市购物消费108元,按照活动规则,他可参加一次抽奖,则小明获得A袋中的奖品的概率为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:

①它的图象关于直线x=对称;

②它的最小正周期为

③它的图象关于点(1)对称;

④它在[]上单调递增.

其中所有正确结论的编号是(

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数,试讨论的单调性;

2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若时,求证:当时,

2)若函数4个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的两个焦点,是椭圆上一点,当时,有.

(1)求椭圆的标准方程;

(2)设过椭圆右焦点的动直线与椭圆交于两点,试问在铀上是否存在与不重合的定点,使得恒成立?若存在,求出定点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦点的坐标为 的坐标为且经过点 .

1)求椭圆的方程;

(2)设过的直线与椭圆交于两不同点,在椭圆上是否存在一点使四边形为平行四边形?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案