精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=a(lnx-x)-3(a∈R,a≠0)的图象在点(2,f(2))处的切线斜率为1.
(1)求函数f(x)的单调区间;
(2)若对任意t∈[0,1],函数g(x)=x3+x2($\frac{m}{2}$+f′(x))在区间(t,2)上总存在极值,求实数m的取值范围.

分析 (1)点(2,f(2))处的切线的斜率为1,即f′(2)=1,可求a值,解关于导函数的不等式,求出函数的单调区间即可,
(2)求出g(x)的解析式,由t∈[0,1],且g(x)在区间(t,2)上总存在极值,得到关于m的不等式组,于是可求m的范围.

解答 解:∵f(x)=a(lnx-x)-3,x>0,
∴f′(x)=a($\frac{1}{x}$-1),f′(2)=-$\frac{a}{2}$=1,解得a=-2,
∴f(x)=-2lnx+2x-3,f′(x)=$\frac{2(x-1)}{x}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增;
(2)g(x)=x3+($\frac{m}{2}$+2)x2-2x,
∴g′(x)=3x2+(m+4)x-2
∵g(x)在区间(t,2)上总存在极值,且g′(0)=-2
∴$\left\{\begin{array}{l}{g′(t)<0}\\{g′(2)>0}\end{array}\right.$,
由题意知:对于任意的t∈[0,1],g′(t)<0恒成立,
所以有:$\left\{\begin{array}{l}{g′(0)=-2<0}\\{g′(1)<0}\\{g′(2)>0}\end{array}\right.$,∴-9<m<-5.
∴当m∈(-9,-5)内取值时对于任意的t∈[0,1],
函数g(x)=x3+x2[$\frac{m}{2}$+f′(x)]在区间(t,2)上总存在极值.

点评 本题考查利用函数的导数来求函数的单调区间,以及已知函数曲线上一点求曲线的切线方程,考查求导公式的掌握情况,含参数的数学问题的处理,构造函数求解证明不等式问题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:选择题

已知圆,直线上至少存在一点,使得以点为原心,半径为1的圆与圆有公共点,则的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=lnx+$\frac{m}{x}$,m∈R.
(I)当m=1时,求f(x)的极小值;
(Ⅱ)当0<m<$\frac{2}{3}$时,判断函数g(x)=f′(x)-$\frac{x}{3}$零点的个数;
(Ⅲ)若h(x)=f(x)-x在(0,+∞)上单凋递减,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,以BC为斜边的等腰直角三角形ABC与等边三角形ABD所在平面互相垂直,且点E满足$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{AC}$.
(1)求证:平面EBC⊥平面ABC;
(2)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.讨论函数f(x)=(a-1)lnx+ax2+1的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱锥P-ABC中,PA⊥底面ABC,点D,E分别在棱PB、PC上,PA=AB=2,∠ABC=60°,∠BCA=90°,且DE∥BC.
(Ⅰ)求证:BC⊥平面PAC;
(Ⅱ)当点D为PB的中点时,求AD与平面PAC所成角的正切值;
(Ⅲ)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=($\sqrt{3}$,sin4x),$\overrightarrow{b}$=(cos4x,1),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的最小正周期及最大值;
(2)求f(x)的单调递增区间;
(3)作f(x)在一个周期的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线l的倾斜角为75°,则直线l的斜率是2+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)是R上的偶函数,且在区间(-∞,0]上是减函数,令a=f(sin$\frac{2}{7}$π),b=f(cos$\frac{5}{7}$π),c=f(tan$\frac{5}{7}$π),则(  )
A.b<a<cB.c<b<aC.b<c<aD.a<b<c

查看答案和解析>>

同步练习册答案