精英家教网 > 高中数学 > 题目详情
12.若函数f(x)=ax+ka-x(a>0且a≠1)在R上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是(  )
A.B.
C.D.

分析 由函数f(x)=ax+ka-x,(a>0,a≠1)在(-∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=-1,a>1,由此不难判断函数的图象.

解答 解:∵函数f(x)=ax+ka-x,(a>0,a≠1)在(-∞,+∞)上是奇函数
∴f(-x)+f(x)=0
即(k+1)(ax+a-x)=0
则k=-1
又∵函数f(x)=ax+ka-x,(a>0,a≠1)在(-∞,+∞)上是增函数
则a>1
则g(x)=loga(x+k)=loga(x-1)
函数图象必过(2,0),且为增函数
故选:D.

点评 若函数在其定义域为为奇函数,则f(-x)+f(x)=0,若函数在其定义域为为偶函数,则f(-x)-f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数-减函数=增函数也是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.椭圆$\frac{{x}^{2}}{4}$+y2=1的弦AB的中点为P(1,$\frac{1}{2}$),则弦AB所在直线的方程及其弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0;
③设随机变量 X~N(1,σ2),若P(0<X<1)=0.35,则P(0<X<2)=0.7;
④两个随机变量的线性相关性越强,则相关系数就越接近于1.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.比较a4+5a2+7与(a2+2)2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax,g(x)=a2x-b,其中b<0,a>0且a≠1.当x∈[-1,1]时,y=f(x)的最大值与最小值之和为$\frac{5}{2}$.
(1)求a的值; 
(2)若a>1,且不等式|$\frac{f(x)+bg(x)}{f(x)}$|≤1在x∈[0,1]恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设集合A={x|3≤x<10},B={x|2<x<7},求A∩B,A∪CRB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题中真命题的个数为(  )
①末位是0的整数,可以被2整除;
②角平分线上的点到这个角的两边的距离相等;
③正四面体中任意两条棱的夹角相等;
④平面内任意一条直线的斜率必存在.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在侧面ABB1A1为长方形的三棱柱ABC-A1B1C1中,AB=a,AA1=$\sqrt{2}$a,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1,且OC=OA.
(1)求点C1到侧面ABB1A1的距离;
(2)求直线C1D与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(x)=(1+\frac{1}{tanx}){sin^2}x-2sin(x+\frac{π}{4})sin(x-\frac{π}{4})$
(1)若tanα=2,求f(α)的值;
(2)已知sinθ,cosθ是方程x2-ax+a=0的两根,求f(θ)-$\frac{1}{2}cos2θ-\frac{1}{2}$的值.

查看答案和解析>>

同步练习册答案