【题目】在冬季,由于受到低温和霜冻的影响,蔬菜的价格会随着需求量的增加而提升.已知某供应商向饭店定期供应某种蔬菜,其价格会随着日需求量的增加而上升,具体情形统计如下表所示:
(1)根据上表中的数据进行判断,与哪一个更适合作为日供应量与单价之间的回归方程;(给出判断即可,不必说明理由);
(2)根据(1)的判断结果以及参考数据,建立关于的回归方程;
(3)该地区有个酒店,其中个酒店每日对蔬菜的需求量在以下,个酒店对蔬菜的需求量在以上,从这个酒店中任取个进行调查,求恰有个酒店对蔬菜需求量在以上的概率.
参考公式及数据:
对于一组数据,...,其回归直线的斜率和截距的最小二乘估计分别为,
其中:,
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和单调递减区间;
(2)将y=f(x)图象上所有的点向右平行移动个单位长度,得到y=g(x)的图象.若g(x)在(0,m)内是单调函数,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:x∈[1,2], ﹣lnx﹣a≥0,命题q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣1+ (a∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内含20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.
设在A俱乐部租一块场地开展活动x小时的收费为元,在B俱乐部租一块场地开展活动x小时的收费为元,试求与的解析式;
问该企业选择哪家俱乐部比较合算,为什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集.
(1)当t=4时,求A∪B及A∩RB;
(2)若A∪B=A,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C的圆心在直线上,且与直线相切于点
(1)求圆C的方程;
(2)是否存在过点的直线与圆C交于两点,且的面积为(O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com