精英家教网 > 高中数学 > 题目详情

【题目】在冬季,由于受到低温和霜冻的影响,蔬菜的价格会随着需求量的增加而提升.已知某供应商向饭店定期供应某种蔬菜,其价格会随着日需求量的增加而上升,具体情形统计如下表所示:

(1)根据上表中的数据进行判断,哪一个更适合作为日供应量与单价之间的回归方程;(给出判断即可,不必说明理由);

(2)根据(1)的判断结果以及参考数据,建立关于的回归方程;

(3)该地区有个酒店,其中个酒店每日对蔬菜的需求量在以下,个酒店对蔬菜的需求量在以上,从这个酒店中任取个进行调查,求恰有个酒店对蔬菜需求量在以上的概率.

参考公式及数据:

对于一组数据...,其回归直线的斜率和截距的最小二乘估计分别为

其中:

【答案】(1)选择(2)(3)

【解析】分析:(1)选择作为日供应量之间的回归方程更适合;(2)对两边同时取自然对数得,故从而可得结果;(3)利用列举法,从这个酒店中任取个共种,恰有个酒店对蔬菜需求量在以上的有根据古典概型概率公式可得结果.

详解(1)选择作为日供应量之间的回归方程更适合.

(2)对两边同时去自然对数得

,故

故所求方程为.

(3)依题意,个酒店每日对蔬菜的需求量在以下,记为个酒店对蔬菜的需求量在以上,记为,则任取个酒店,所有的情况为

,共种,

其中满足条件的有种,故所求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=4cosxsinx+-1

1)求fx)的最小正周期和单调递减区间;

2)将y=fx)图象上所有的点向右平行移动个单位长度,得到y=gx)的图象.若gx)在(0m)内是单调函数,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:x∈[1,2], ﹣lnx﹣a≥0,命题q:x0∈R,使得x02+2ax0﹣8﹣6a≤0,如果命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣1+ (a∈R).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市有AB两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时.

设在A俱乐部租一块场地开展活动x小时的收费为,在B俱乐部租一块场地开展活动x小时的收费为,试求的解析式;

问该企业选择哪家俱乐部比较合算,为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数常数

证明上是减函数,在上是增函数;

时,求的单调区间;

对于中的函数和函数,若对任意,总存在,使得成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-7x+60}B={x|4-txt}R为实数集.

1)当t=4时,求ABARB

2)若AB=A,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线上,且与直线相切于点

1)求圆C的方程;

2)是否存在过点的直线与圆C交于两点,且的面积为O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案