精英家教网 > 高中数学 > 题目详情

【题目】已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+x2
(1)求x<0时,f(x)的解析式;
(2)问是否存在这样的非负数a,b,当x∈[a,b]时,f(x)的值域为[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,请说明理由.

【答案】
(1)解:设x<0,则﹣x>0,于是f(﹣x)=﹣x+x2

又f(x)为奇函数,f(﹣x)=﹣f(x),∴﹣f(x)=﹣x+x2

即x<0时,f(x)=x﹣x2


(2)解:假设存在这样的数a,b.

∵a≥0,且f(x)=x+x2在x≥0时为增函数,

∴x∈[a,b]时,f(x)∈[f(a),f(b)]=[4a﹣2,6b﹣6],

,即

,考虑到0≤a<b,且4a﹣2<6b﹣6,

可得符合条件的a,b值分别为


【解析】(1)设x<0,则﹣x>0,利用x≥0时,f(x)=x+x2 . 得到f(﹣x)=﹣x+x2 , 再由奇函数的性质得到f(﹣x)=﹣f(x),代换即可得到所求的解析式.(2)假设存在这样的数a,b.利用函数单调性的性质建立方程求参数,若能求出,则说明存在,否则说明不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系内,已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)当a∈( ,3)时,求直线AC的倾斜角α的取值范围;
(2)当a=2时,求△ABC的BC边上的高AH所在直线方程l.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点与抛物线 的焦点F重合,且椭圆短轴的两个端点与F构成正三角形.
(1)求椭圆的方程;
(2)若过点(1,0)的直线l与椭圆交于不同两点P、Q,试问在x轴上是否存在定点E(m,0),使 恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(Ⅰ)求不等式的解集;

(Ⅱ)已知函数的最小值为,若实数,求

最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的单调递增区间
(Ⅱ)若sin2x+af(x+ )+1>6cos4x对任意x∈(﹣ )恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a∈R,则“关于x的方程x2+ax+1=0无实根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虚数单位)在复平面上对应的点位于第四象限”的(
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是(

A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(﹣2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(﹣2)
D.函数f(x)有极大值f(﹣2)和极小值f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是边长为2的正三角形ABC边BC上的动点,则 的值(
A.是定值6
B.最大值为8
C.最小值为2
D.与P点位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自201611日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得要不要再生一个生二孩能休多久产假等问题成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:

产假安排(单位:周)

14

15

16

17

18

有生育意愿家庭数

4

8

16

20

26

1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?

2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.

求两种安排方案休假周数和不低于32周的概率;

如果用表示两种方案休假周数之和.求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案