精英家教网 > 高中数学 > 题目详情
2.设各项均为正数的数列{an}满足a1=2,an+2=an(an+1)${\;}^{-\frac{3}{2}}$(n∈N*),若a2=$\frac{1}{4}$,则猜想a2014的值为${2}^{{2}^{2013}}$.

分析 通过计算出前几项的值猜想an=${2}^{(-1)^{n}•{2}^{n-1}}$,进而计算可得结论.

解答 解:依题意,a3=a1(a2)${\;}^{-\frac{3}{2}}$
=2•$({2}^{-2})^{-\frac{3}{2}}$
=24
a4=a2•$({a}_{3})^{-\frac{3}{2}}$
=2-2•${2}^{4•(-\frac{3}{2})}$
=2-8
猜想:an=${2}^{(-1)^{n}•{2}^{n-1}}$.
∴a2014=${2}^{(-1)^{2014}•{2}^{2014-1}}$=${2}^{{2}^{2013}}$,
故答案为:${2}^{{2}^{2013}}$.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设f(θ)=$\frac{{2cos}^{2}θ{+sin}^{2}(2π-θ)+cos(-θ)-3}{2{+2cos}^{2}(π+θ)+cos(2π-θ)}$,求f($\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知z为复数,$\frac{z+3}{z-3}$为纯虚数,且z在复平面内对应的点为P,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在正四面体ABCD(各条棱相等)中,BC所在直线与AD所在直线所成角是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex(ax+b)-x2-4x在(0,f(0))处切线方程为y=3x+2,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知两圆C1:(x+3)2+(y-1)2=4和C2:(x-4)2+(y-5)2=4.
(1)若过点(0,1)的直线l与两圆相交所得的弦相等,求直线l的方程;
(2)若过点(-1.5,3.5)存在两条互相垂直的直线l和m,它们分别与两圆相交所得的弦相等,求直线l和m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列推理合理的是(  )
A.若y=f(x)是减函数,则f′(x)<0
B.若△ABC为锐角三角形,则sinA+sinB>cosA+cosB
C.因为a>b(a,b∈R),则a+2i>b+2i
D.在平面直角坐标系中,若两直线平行,则它们的斜率相等

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=2$\sqrt{1-2x}$+$\sqrt{4x+3}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{a+lnx}{x}$在点(1,f(1))处切线与x轴平行.求实数a的值及f(x)的极值.

查看答案和解析>>

同步练习册答案