【题目】设椭圆为左右焦点,为短轴端点,长轴长为4,焦距为,且,的面积为.
(Ⅰ)求椭圆的方程
(Ⅱ)设动直线椭圆有且仅有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在求出点的坐标,若不存在.请说明理由.
【答案】(1) (2)存在定点P(1,0)
【解析】
(Ⅰ)由椭圆长轴长为4,焦距为2c,且b>c,△BF1F2的面积为,列方程组,求出a,b,c,得椭圆方程.(Ⅱ)将直线l方程与椭圆方程联立,由直线与椭圆有且只有一个公共点,求出M,由,得N(4,4k+m).假设存在定点P满足条件,由图形对称性知,点P必在x轴上.设P(x1,0),由,得(4x1﹣4)+x12﹣4x1+3=0,由此可求出满足条件的定点.
(1)由题意知,解得:,故椭圆C的方程是.
(2)由得(4k2+3)x2+8kmx+4m2-12=0.
因为动直线l与椭圆C有且只有一个公共点M(x0,y0),所以m≠0且Δ=0,
即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2-m2+3=0.(*)
此时x0=-=-,y0=kx0+m=,所以M(-
由得N(4,4k+m).
假设平面内存在定点P满足条件,由图形对称性知,点P必在x轴上.
设P(x1,0),则对满足(*)式的m、k恒成立.
因为=(-,=(4-x1,4k+m),由,
得-+-4x1+x++3=0,
整理,得(4x1-4)+x-4x1+3=0.(**)
由于(**)式对满足(*)式的m,k恒成立,所以解得x1=1.
故存在定点P(1,0),使得以MN为直径的圆恒过点M.
科目:高中数学 来源: 题型:
【题目】已知椭圆()的离心率为,左顶点B与右焦点之间的距离为3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线交轴于点,过且斜率不为的直线与椭圆相交于两点,连接并延长分别与直线交于两点. 若,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是等差数列,是各项都为正数的等比数列,且,.
(1)求,的通项公式;
(2)设,,若,,成等差数列(、为正整数且),求和的值;
(3)设为数列的前项和,是否存在实数,使得对一切均成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:
(1)由频率分布直方图,估计这100人年龄的平均数;
(2)根据以上统计数据填写下面的22列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
参考数据:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义域为R上的奇函数,当x>0时,f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1和图2中所有的正方形都全等,图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )
A. B. C. D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,.
(1)当时,若对任意均有成立,求实数的取值范围;
(2)设直线与曲线和曲线相切,切点分别为,,其中.
①求证:;
②当时,关于的不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com