精英家教网 > 高中数学 > 题目详情

【题目】设椭圆为左右焦点,为短轴端点,长轴长为4,焦距为,且,的面积为.

(Ⅰ)求椭圆的方程

(Ⅱ)设动直线椭圆有且仅有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在求出点的坐标,若不存在.请说明理由.

【答案】(1) (2)存在定点P(1,0)

【解析】

(Ⅰ)由椭圆长轴长为4,焦距为2c,且bc,△BF1F2的面积为,列方程组,求出abc,得椭圆方程.(Ⅱ)将直线l方程与椭圆方程联立,由直线与椭圆有且只有一个公共点,求出M,由,得N44k+m).假设存在定点P满足条件,由图形对称性知,点P必在x轴上.设Px10),由,得(4x14+x124x1+30,由此可求出满足条件的定点.

(1)由题意知,解得:,故椭圆C的方程是

(2)由得(4k2+3)x2+8kmx+4m2-12=0.

因为动直线l与椭圆C有且只有一个公共点M(x0y0),所以m≠0且Δ=0,

即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2m2+3=0.(*)

此时x0=-=-y0kx0m,所以M(-

N(4,4km).

假设平面内存在定点P满足条件,由图形对称性知,点P必在x轴上.

P(x1,0),则对满足(*)式的mk恒成立.

因为=(-=(4-x1,4km),由

得--4x1x+3=0,

整理,得(4x1-4)x-4x1+3=0.(**)

由于(**)式对满足(*)式的mk恒成立,所以解得x1=1.

故存在定点P(1,0),使得以MN为直径的圆恒过点M.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,左顶点B与右焦点之间的距离为3.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设直线轴于点,过且斜率不为的直线与椭圆相交于两点,连接并延长分别与直线交于两点. 若,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,是各项都为正数的等比数列,且.

(1)求,的通项公式;

(2)设,若成等差数列(为正整数且),求的值;

(3)设为数列的前项和,是否存在实数,使得对一切均成立?若存在,求出的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)画出函数图象并写出顶点坐标和对称轴;

2)判断奇偶性,并指出单调区间.

3)求函数时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的频率分布直方图,在这100人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如表所示:

(1)由频率分布直方图,估计这100人年龄的平均数;

(2)根据以上统计数据填写下面的22列联表,据此表,能否在犯错误的概率不超过5%的前提下,认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?

45岁以下

45岁以上

总计

不支持

支持

总计

参考数据:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义域为R上的奇函数,当x0时,fx=x2+2x

1)求fx)的解析式;

2)若不等式ft﹣2+f2t+1)>0成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1和图2中所有的正方形都全等,图1中的正方形放在图2中的①②③④某一位置,所组成的图形能围成正方体的概率是( )

A. B. C. D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,若对任意均有成立,求实数的取值范围;

(2)设直线与曲线和曲线相切,切点分别为,其中.

①求证:

②当时,关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案