【题目】某同学参加社会实践活动,随机调查了某小区5个家庭的年可支配收入x(单位:万元)与年家庭消费y(单位:万元)的数据,制作了对照表:
x/万元 | 2.7 | 2.8 | 3.1 | 3.5 | 3.9 |
y/万元 | 1.4 | 1.5 | 1.6 | 1.8 | 2.2 |
由表中数据得回归直线方程为,得到下列结论,其中正确的是( )
A.若某户年可支配收入为4万元时,则年家庭消费约为2.3万元
B.若某户年可支配收入为4万元时,则年家庭消费约为2.1万元
C.若年可支配收入每增加1万元,则年家庭消费相应平均增加0.5万元
D.若年可支配收入每增加1万元,则年家庭消费相应平均增加0.1万元
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率,点在椭圆上.
(1)求椭圆的标准方程;
(2)设点是椭圆上一点,左顶点为,上顶点为,直线与轴交于点,直线与轴交于点,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线是过点,倾斜角为的直线,以直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(Ⅰ)求曲线的普通方程和曲线的一个参数方程;
(Ⅱ)曲线与曲线相交于, 两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知△ABC的三个内角A,B,C的对边分别为a,b,c,向量m=,n=,且m与n的夹角为.
(1)求角C;
(2)已知c=,S△ABC=,求a+b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个命题:
①在定义域上单调递增;
②若锐角,满足,则;
③是定义在上的偶函数,且在上是增函数,若,则;
④函数的一个对称中心是;
其中真命题的序号为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如下表格:
潜伏期(单位:天) | ||||||||
人 数 | 60岁及以上 | 2 | 5 | 8 | 7 | 5 | 2 | 1 |
60岁以下 | 0 | 2 | 2 | 4 | 9 | 2 | 1 |
(1)估计该地区500名患者中60岁以下的人数;
(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);
(3)从样本潜伏超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数满足(),且.
(1)求的解析式;
(2)若函数在区间上是单调函数,求实数的取值范围;
(3)若关于的方程有区间上有一个零点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼 让斑马线”行为统计数据:
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口 9月份的不“礼让斑马线”违章驾驶员人数;
(3)若从表中3、4月份分别抽取4人和2人,然后再从中任选2 人进行交规调查,求抽到的两人恰好来自同一月份的概率.
参考公式: , .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com