精英家教网 > 高中数学 > 题目详情
13、定义在R上的函数y=f(x)在x=1处的切线方程是y=-2x+3,则f(1)+f′(1)=
-1
分析:利用函数的切线方程与函数之间的关系是解决本题的关键,把握好函数在该点处的导数值就是在该点处切线的斜率,该点处的函数值就是切点的纵坐标.
解答:解:由于函数y=f(x)在x=1处的切线方程是y=-2x+3,
故f(1)=(-2)×1+3=1,f′(1)=-2,故f(1)+f′(1)=-1.
故答案为:-1.
点评:本题考查函数切线方程与函数导数之间的关系,考查根据切线方程求函数在该点处的函数值和导数值的问题,考查学生的等价转化思想和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、定义在R上的函数y=f(x)满足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,则f(508)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①“a>b”是“2a>2b”成立的充要条件;
②“a=b”是“lga=lgb”成立的充分不必要条件;
③函数f(x)=ax2+bx(x∈R)为奇函数的充要条件是“a=0”
④定义在R上的函数y=f(x)是偶函数的必要条件是
f(-x)f(x)
=1”

其中真命题的序号是
①③
①③
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)=
-1
-1

查看答案和解析>>

同步练习册答案