精英家教网 > 高中数学 > 题目详情

已知直线所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到F的最小距离为2

(1)求椭圆C的标准方程;

(2)已知圆O:,直线:,当点在椭圆C上运动时,直线与圆O是否相交于两个不同的点A,B?若相交,试求弦长|AB|的取值范围,否则说明理由.

(1)由已知得,所以F(3,0)-------------------------2分

        设椭圆方程C为,则解得---------4分

        所以椭圆方程为--------------------------------------5分

   (2)因为点,在椭圆C上运动,所以

        从而圆心O到直线的距离

        所以直线与圆O恒相交于两个不同的点A、B---------------------------------7分

        此时弦长---------------------------9分

        由于,所以,则---------------------12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年滨州一模文)(14分)

已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.

   (1)求椭圆的标准方程;

   (2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为8.   (1)求椭圆的标准方程;   (2)已知圆,直线.试证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011届浙江省杭州市高三第二次教学质量考试数学理卷 题型:解答题

.(本题满分14分)
已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 设过点的直线交椭圆于两点,若,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年河北省正定中学高三下学期第三次模拟考试数学(文) 题型:解答题

(本小题满分12分)已知直线所经过的定点恰好是椭圆的一个焦点,且椭圆上的点到点的最大距离为3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆,直线.试证明:当点在椭圆上运动时,直线与圆恒相交,并求直线被圆所截得弦长的取值范围.
(Ⅲ)设直线与椭圆交于两点,若直线轴于点,且,当变化时,求 的值;   

查看答案和解析>>

同步练习册答案